[1] C. Alsina, M. J. Frank, B. Schweizer, Associative functions: Triangular norms and copulas, World Scientific, Singapore, 2006.
[2] E. Aşıcı, R. Mesiar, On the construction of uninorms on bounded lattices, Fuzzy Sets and Systems, 408 (2021), 65-85.
[3] E. Aşıcı, R. Mesiar, On generating uninorms on some special classes of bounded lattices, Fuzzy Sets and Systems, 439 (2022), 102-125.
[4] G. Birkhoff, Lattice theory, American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
[5] S. Bodjanova, M. Kalina, Construction of uninorms on bounded lattices, in: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica, Serbia, 11-13 September, 2014.
[6] S. Bodjanova, M. Kalina, Uninorms on bounded lattices-recent development, in: J. Kacprzyk (Ed.), Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017, in: Advances in Intelligent Systems and Computing, 641, Springer, Cham, (2018), 224-234.
[7] D. Butnariu, E. P. Klement, Triangular norm-based measures and games with fuzzy coalitions, Kluwer Academic Publishers, Dordrecht, 1993.
[8] G. D. Çaylı, Alternative approaches for generating uninorms on bounded lattice, Information Sciences, 488 (2019), 111-139.
[9] G. D. Çaylı, New methods to construct uninorms on bounded lattices, International Journal of Approximate Reasoning, 115 (2019), 254-264.
[10] G. D. Çaylı, Uninorms on bounded lattices with the underlying t-norms and t-conorms, Fuzzy Sets and Systems, 395 (2020), 107-129.
[11] G. D. Çaylı, On generating of t-norms and t-conorms on bounded lattices, International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 28 (2020), 807-835.
[12] G. D. Çaylı, F. Kara¸cal, R. Mesiar, On internal and locally internal uninorms on bounded lattices, International Journal of General Systems, 48 (2019), 235-259.
[13] Y. Dan, B. Q. Hu, A new structure for uninorms on bounded lattices, Fuzzy Sets and Systems, 386 (2020), 77-94.
[14] Y. Dan, B. Q. Hu, J. Qiao, New constructions of uninorms on bounded lattices, International Journal of Approximate Reasoning, 110 (2019), 185-209.
[15] B. De Baets, Idempotent uninorms, European Journal of Operational Research, 118 (1999), 631-642.
[16] B. De Baets, J. Fodor, Van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof, Fuzzy Sets and Systems, 104(1) (1999), 133-136.
[17] B. De Baets, J. Fodor, D. Ruiz-Aguilera, J. Torrens, Idempotent uninorms on finite ordinal scales, International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 17(1) (2009), 1-14.
[18] J. Drewniak, P. Drygaś, On a class of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (2002), 5-10.
[19] P. Drygaś, On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums, Fuzzy Sets and Systems, 161 (2010), 149-157.
[20] P. Drygaś, E. Rak, Distributivity equation in the class of 2-uninorms, Fuzzy Sets and Systems, 291 (2016), 82-97.
[21] D. Dubois, H. Prade, A review of fuzzy set aggregation connective, Information Sciences, 36 (1985), 85-121.
[22] D. Dubois, H. Prade, Fundamentals of fuzzy sets, Kluwer Academic Publisher, Boston, 2000.
[23] A. Dvořák, M. Holčapek, Ordinal sums of t-norms and t-conorms on bounded lattices, In: R. Halaś et al. (eds) New Trends in Aggregation Theory. AGOP 2019. Advances in Intelligent Systems and Computing, Springer, Cham, Vol. 981 (2019), 289-301.
[24] A. Dvořák, M. Holčapek, New construction of an ordinal sum of t-norms and t-conorms on bounded lattices, Information Sciences, 515 (2020), 116-131.
[25] J. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 5 (1997), 411-427.
[26] M. González-Hidalgo, A. Mir-Torres, D. Ruiz-Aguilera, J. Torrens, Edge-images using a uninorm-based fuzzy mathematical morphology: Opening and closing, in: J. Tavares, N. Jorge (Ed.), Advances in Computational Vision and Medical Image Processing, number 13 in Computational Methods in Applied Sciences, Springer, Netherlands, (2009), 137-157.
[27] M. González-Hidalgo, A. Mir-Torres, D. Ruiz-Aguilera, J. Torrens, Image analysis applications of morphological operators based on uninorms, in: Proceedings of the IFSA-EUSFLAT Conference, Lisbon, Portugal, (2009), 630- 635.
[28] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, Aggregation functions, Cambridge University Press, Cambridge, 2009.
[29] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes, Information Sciences, 181 (2011), 23-43.
[30] P. Hájek, T. Havránek, R. Jiroušek, Uncertain information processing in expert systems, CRC Press, Boca Raton, 1992.
[31] W. Homenda, A. Jastrzebska, W. Pedrycz, Multicriteria decision making inspired by human cognitive processes, Applied Mathematics and Computation, 290 (2016), 392-411.
[32] F. Kara¸cal, R. Mesiar, Uninorms on bounded lattices, Fuzzy Sets and Systems, 261 (2015), 33-43.
[33] F. Kara¸cal, Ü. Ertuğrul, R. Mesiar, Characterization of uninorms on bounded lattices, Fuzzy Sets and Systems, 308 (2017), 54-71.
[34] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publications, Dordrecht, 2000.
[35] G. Li, H. W. Liu, J. Fodor, On weakly smooth uninorms on finite chain, International Journal of Intelligent Systems, 30 (2015), 421-440.
[36] J. Medina, Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices, Fuzzy Sets and Systems, 202 (2012), 75-88.
[37] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences USA, 28 (1942), 535-537.
[38] R. Mesiar, A. Kolesárová, A. Stupňanová, Quo vadis aggregation, International Journal of General Systems, 47(2) (2018), 97-117.
[39] A. Mesiarová-Zemánková, Ordinal sums of representable uninorms, Fuzzy Sets and Systems, 308 (2017), 42-53.
[40] A. Mesiarová-Zemánková, Characterization of idempotent n-uninorms, Fuzzy Sets and Systems, 427 (2022), 1-22.
[41] E. S. Palmeira, B. C. Bedregal, Extension of fuzzy logic operators defined on bounded lattices via retractions, Computers and Mathematics with Applications, 63 (2012), 1026-1038.
[42] W. Pedrycz, K. Hirota, Uninorm-based logic neurons as adaptive and inter-pretable processing constructs, Soft Computing, 11(1) (2016), 41-52.
[43] S. Saminger, On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and Systems, 157 (2006), 1403-1416.
[44] B. Schweizer, A. Sklar, Associative functions and statistical triangular inequalities, Publicationes Mathematicae Debrecen, 8 (1961), 169-186.
[45] B. Schweizer, A. Sklar, Probabilistic metric spaces, North-Holland, New York, 1983.
[46] X. R. Sun, H. W. Liu, Further characterization of uninorms on bounded lattices, Fuzzy Sets and Systems, 427 (2022), 96-108.
[47] X. Wu, G. Chen, Answering an open problem on t-norms for type-2 fuzzy sets, Information Sciences, 522 (2020), 124-133.
[48] A. Xie, S. Li, On constructing the largest and smallest uninorms on bounded lattices, Fuzzy Sets and Systems, 386 (2020), 95-104.
[49] R. R. Yager, Misrepresentations and challenges: A response to Elkan, IEEE Expert, (1994), 41-42.
[50] R. R. Yager, Uninorms in fuzzy systems modeling, Fuzzy Sets and Systems, 122(1) (2001), 167-175.
[51] R. R. Yager, A. Rybalov, Uninorms aggregation operators, Fuzzy Sets and Systems, 80 (1996), 111-120.
[52] B. Zhao, T. Wu, Some further results about uninorms on bounded lattices, International Journal of Approximate Reasoning, 130 (2021), 22-49.
[53] H. P. Zhang, M. Wu, Z. Wang, Y. Ouyang, B. De Baets, A characterization of the classes Umin and Umax of uninorms on a bounded lattice, Fuzzy Sets and Systems, 423 (2021), 107-121.