[1] A. M. Abbasov, M. B. Mamedova, Application of fuzzy time series to population forecasting, Vienna University of Technology, 12 (2003), 545-552.
[2] L. Agusti, S. Salcedo Sanz, S. Jimenez-Fernandez, L. Carro Calvo, J. Del Ser, J. A. Portilla-Figueras, A new grouping genetic algorithm for clustering problems, Expert Systems with Applications, 39(10) (2012), 9695-9703.
[3] A. Asuncion, D. Newman, Uci machine learning repository, University of California, 2007.
[4] P. Berkhin, A survey of clustering data mining techniques, In: Kogan, J., Nicholas, C., Teboulle, M. (eds) Grouping Multidimensional Data. Springer, Berlin, 2006.
[5] J. C. Bezdek, R. Ehrlich, W. Full, FCM The fuzzy c-means clustering algorithm, Computers and Geosciences, 10(2-3) (1984), 191-203.
[6] N. Bidi, Z. Elberrichi, Feature selection for text classi cation using genetic algorithms, In 2016 8th International Conference on Modelling, Identi cation and Control, IEEE, (2016), 806-810.
[7] N. Bouguila, W. ElGuebaly, Discrete data clustering using nite mixture models, Pattern Recognition, 42(1) (2009), 33-42.
[8] J. H. Chen, W. L. Hung, An automatic clustering algorithm for probability density functions, Journal of Statistical Computation and Simulation, 85(15) (2015), 3047-3063.
[9] M. Chen, D. Miao, Interval set clustering, Expert Systems with Applications, 38(4) (2011), 2923-2932.
[10] D. L. Davies, D. W. Bouldin, A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (1979), 224-227.
[11] F. D. A. De Carvalho, J. T. Pimentel, L. X. Bezerra, Clustering of symbolic interval data based on a single adaptive L1 distance, In 2007 International Joint Conference on Neural Networks, IEEE, (2007), 224-229.
[12] E. Egrioglu, C. H. Aladag, U. Yolcu, Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks, Expert Systems with Applications, 40(3) (2013), 854-857.
[13] A. Goh, R. Vidal, Unsupervised riemannian clustering of probability density functions, In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, (2008), 377-392.
[14] L. O. Hall, I. B. Ozyurt, J. C. Bezdek, Clustering with a genetically optimized approach, IEEE Transactions on Evolutionary Computation, 3(2) (1999), 103-112.
[15] W. L. Hung, J. H. Yang, K. F. Shen, Self-updating clustering algorithm for interval-valued data, In 2016 IEEE International Conference on Fuzzy Systems, (2016), 1494-1500.
[16] J. T. Jeng, C. M. Chen, S. C. Chang, C. C. Chuang, Ipfcm clustering algorithm under euclidean and Hausdor distance measure for symbolic interval data, International Journal of Fuzzy Systems, 21(7) (2019), 2102-2119.
[17] H. Le Capitaine, C. Frelicot, A cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operators, IEEE Transactions on Fuzzy Systems, 19(3) (2011), 580-588.
[18] T. W. Liao, Clustering of time series data a survey, Pattern Ecognition, 38(11) (2005), 1857-1874.
[19] L. Ma, Y. Zhang, V. Leiva, S. Liu, T. Ma, A new clustering algorithm based on a radar scanning strategy with applications to machine learning data, Expert Systems with Applications, 191 (2022), 116143.
[20] A. Montanari, D. G. Calo, Model-based clustering of probability density functions, Advances in Data Analysis and Classi cation, 7(3) (2013), 301-319.
[21] H. Nguyen, X. N. Bui, Q. H. Tran, N. L. Mai, A new soft computing model for estimating and controlling blast-produced ground vibration based on hierarchical k-means clustering and cubist algorithms, Applied Soft Computing,77 (2019), 376-386.
[22] T. Nguyentrang, T. Vovan, Fuzzy clustering of probability density functions, Journal of Applied Statistics, 44(4) (2017), 583-601.
[23] D. Phamtoan, T. Vovan, Automatic fuzzy genetic algorithm in clustering for images based on the extracted intervals, Multimedia Tools and Applications, 80(28) (2021), 35193-35215.
[24] S. I. R. Rodriguez, F. D. A. T. De Carvalho, A new fuzzy clustering algorithm for interval-valued data based on city-block distance, IEEE International Conference on Fuzzy Systems, (2019), 1-6.
[25] M. Rostami, P. Moradi, A clustering based genetic algorithm for feature selection, In 2014 6th Conference on Information and Knowledge Technology, (2014), 112-116.
[26] T. Vovan, An improved fuzzy time series forecasting model using variations of data, Fuzzy Optimization and Decision Making, 18(2) (2019), 151-173.
[27] T. Vovan, L. Nguyenhuynh, K. Nguyenhuu, Building the forecasting model for time series based on the improvement of fuzzy relationships, Iranian Journal of Fuzzy Systems, 19(4) (2022), 89-106.
[28] T. Vovan, T. Nguyentrang, Similar coecient of cluster for discrete elements, Sankhya B, 80(1) (2018), 19-36.
[29] T. Vovan, D. Phamtoan, D Tranthituy, Automatic genetic algorithm in clustering for discrete elements, Commu-nications in Statistics-Simulation and Computation, 50(6) (2021), 1679-1694.
[30] T. Vovan, D. Phamtoan, L. H. Tuan, T. Nguyentrang, An automatic clustering for interval data using the genetic algorithm, Annals of Operations Research, 303(1) (2021), 359-380.
[31] Q.Wang, X.Wang, C. Fang, W. Yang, Robust fuzzy c-means clustering algorithm with adaptive spatial and intensity constraint and membership linking for noise image segmentation, Applied Soft Computing, 92 (2020), 106318.
[32] K. L. Wu, M. S. Yang, A cluster validity index for fuzzy clustering, Pattern Recognition Letters, 26(9) (2005), 1275-1291.
[33] H. Yu, L. Chen, J. Yao, X. Wang, A three-way clustering method based on an improved dbscan algorithm, Physica A: Statistical Mechanics and its Applications, 535 (2019), 122289.
[34] X. Zhao, J. Liang, C. Dang, A strati ed sampling based clustering algorithm for large-scale data, Knowledge-Based Systems, 163 (2019), 416-428.