[1] J. C. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means clustering algorithm, Computers and Geosciences, 10(2-3) (1984), 191-203.
[2] T. Calinski, J. A. Harabasz, A dendrite method for cluster analysis, Communications in Statistics-Theory and Methods, 3(1) (1974), 1-27.
[3] J. H. Dai, H. W. Tian, Entropy measures and granularity measures for set-valued information systems, Information Sciences, 240 (2013), 72-82.
[4] D. L. Davies, D. W. Bouldin, A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (1979), 224-227.
[5] Z. Deng, J. Y. Wang, New distance measure for Fermatean fuzzy sets and its application, International Journal of Intelligent Systems, 37 (2022), 1903-1930.
[6] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics, (1973), 32-57.
[7] A. W. Edwards, L. L. Cavalli-Sforza, A method for cluster analysis, Biometrics, (1965), 362-375.
[8] L. G. Fei, H. Wang, L. Chen, Y. Deng, A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators, Iranian Journal of Fuzzy Systems, 16(3) (2019), 113-126.
[9] B. Gohain, R. Chutia, P. Dutta, S. Gogoi, Two new similarity measures for intuitionistic fuzzy sets and its various applications, International Journal of Intelligent Systems, 37(9) (2022), 5557-5596.
[10] J. A. Hartigan, W. A. Wong, Algorithm AS 136: A k-means clustering algorithm, Journal of The Royal Statistical Society, Series c (applied statistics), 28(1) (1979), 100-108.
[11] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, M. Palaniswami, Fuzzy c-means algorithms for very large data, IEEE Transactions on Fuzzy Systems, 20(6) (2012), 1130-1146.
[12] M. Kryszkiewicz, Rough set approach to incomplete information systems, Information Sciences, 112 (1998), 39-49.
[13] U. Kuzelewska, Advantages of information granulation in clustering algorithms, International Conference on Agents and Arti cial Intelligence, Springer, Berlin, Heidelberg, (2011), 131-145.
[14] Z. W. Li, X. F. Liu, J. H. Dai, J. L. Chen, H. Fujita, Measures of uncertainty based on Gaussian kernel for a fully fuzzy information system, Knowledge-Based Systems, 196 (2020), 105791.
[15] Z. W. Li, Z. H. Wang, Y. Song, C. F. Wen, Information structures in a fuzzy set-valued information system based on granular computing, International Journal of Approximate Reasoning, 134 (2021), 72-94.
[16] J. Y. Liang, Z. Z. Shi, The information entropy, rough entropy and knowledge granulation in rough set theory, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(1) (2004), 37-46.
[17] J. Y. Liang, Z. Z. Shi, D. Li, M. J. Wierman, Information entropy, rough entropy and knowledge granulation in incomplete information systems, International Journal of General Systems, 35(6) (2006), 641-654.
[18] T. Y. Lin, Granular computing on binary relations I: Data mining and neighborhood systems, Rough Sets in Knowledge Discovery, 1(1) (1979), 3-18.
[19] T. Y. Lin, Granular computing on binary relations II: Rough set representations and belief functions, Rough Sets in Knowledge Discovery, (1998), 122-140.
[20] T. Y. Lin, Granular computing: Fuzzy logic and rough sets, Computing with Words in Information/Intelligent Systems 1, Physica, Heidelberg, (1999), 183-200.
[21] K. Y. Liu, X. B. Yang, H. L. Yu, H. Fujita, X. J. Chen, D. Liu, Supervised information granulation strategy for attribute reduction, International Journal of Machine Learning and Cybernetics, 11(9) (2020), 2149-2163.
[22] R. L. Liu, H. L. Yang, L. J. Zhang, Information structures in a fuzzy -covering information system, Journal of Intelligent and Fuzzy Systems, 40(6) (2021), 11691-11716.
[23] J. MacQueen, Classi cation and analysis of multivariate observations, Proceedings of the Fifth Berkeley Sympo-sium on Mathematical Statistics and Probability, (1967), 281-297.
[24] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Springer Science and Business Media, (1991), 3-5.
[25] W. Pedrycz, Granular computing: An introduction, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), (2001), 1349-1354.
[26] B. Prabir, N. P. Mukherjee, Fuzzy relations and fuzzy groups, Information Sciences, 36(3) (1985), 267-282.
[27] Y. H. Qian, H. H. Cheng, J. T. Wang, J. Y. Liang, W. Pedrycz, C. Y. Dang, Grouping granular structures in human granulation intelligence, Information Sciences, 382 (2017), 150-169.
[28] Y. H. Qian, Y. B. Li, J. Y. Liang, G. P. Lin, C. Y. Dang, Fuzzy granular structure distance, IEEE Transactions on Fuzzy Systems, 23(6) (2015), 2245-2259.
[29] Y. H. Qian, J. Y. Liang, W. Z. Wu, G. Q. Zhang, Information granularity in fuzzy binary GrC model, IEEE Transactions on Fuzzy Systems, 19 (2011), 253-264.
[30] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20 (1987), 53-65.
[31] C. Z. Wang, Y. Huang, M. W. Shao, D. G. Chen, Uncertainty measures for general fuzzy relations, Fuzzy Sets and Systems, 360 (2019), 82-96.
[32] N. X. Xie, Z. W. Li, W. Z. Wu, G. Q. Zhang, Fuzzy information granular structures: A further investigation, International Journal of Approximate Reasoning, 114 (2019), 127-150.
[33] J. Yang, G. Y. Wang, Q. H. Zhang, Knowledge distance measure in multigranulation spaces of fuzzy equivalence relations, Information Sciences, 448 (2018), 18-35.
[34] T. Yang, X. R. Zhong, G. M. Lang, Y. H. Qian, J. H. Dai, Granular matrix: A new approach for granular structure reduction and redundancy evaluation, IEEE Transactions on Fuzzy Systems, 28(12) (2020), 3133-3144.
[35] Y. Y. Yao, Information granulation and rough set approximation, International Journal of Intelligent Systems, 16(1) (2001), 87-104.
[36] Y. Y. Yao, Three-way decision and granular computing, International Journal of Approximate Reasoning, 103 (2018), 107-123.
[37] M. X. Yao, Granularity measures and complexity measures of partition-based granular structures, Knowledge-Based Systems, 163 (2019), 885-897.
[38] J. Yu, General c-means clustering model, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8) (2005), 1197-1211.
[39] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.
[40] L. A. Zadeh, Fuzzy sets and information granularity, Advances in Fuzzy Set Theory and Applications, 11 (1979), 3-18.
[41] L. A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems, 90(2) (1997), 111-127.
[42] L. A. Zadeh, Fuzzy logic=computing with words, Computing with Words in Information/Intelligent Systems 1, Physica, Heidelberg, (1999), 3-23.
[43] H. Y. Zhang, S. Y. Yang, Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space, Iranian Journal of Fuzzy Systems, 17(4) (2020), 69-84.
[44] P. Zhu, An improved axiomatic de nition of information granulation, Fundamenta Informaticae, 120(1) (2012), 93-109.