[1] S. Anitha, P. Jayanthi, V. Chandrasekaran, An intelligent based healthcare security monitoring schemes for detection
of node replication attack in wireless sensor networks, Measurement, 167 (2020), 1-24.
[2] S. Anvari, M. Abdollahi Azgomi, M. R. Ebrahimi Dishabi, M. Maheri, Weighted K-nearest neighbors classi cation
based on Whale optimization algorithm, Iranian Journal of Fuzzy Systems, 20(3) (2023), 61-74.
[3] C. Basaran, K. D. Kang, H. S. Mehmet, Hop-by-hop congestion control and load balancing in wireless sensor
networks, Proceeding of the 35th Conference on Local Computer Networks (LCN), Denver, CO, USA, (2010),
448-455.
[4] K. Ding, Synchronization of congestion control models for underwater wireless sensor networks, Proceeding of the
37th Chinese Control Conference (CCC), Wuhan, China, (2018), 642-647.
[5] A. Gha ari, Congestion control mechanisms in wireless sensor networks: A survey, Journal of Network and Com-
puter Applications, 52 (2015), 101-115.
[6] A. Grover, R. M. Kumar, M. Angurala, M. Singh, A. Sheetal, R. Maheswar, Rate aware congestion control mecha-
nism for wireless sensor networks, Alexandria Engineering Journal, 61(6) (2022), 4765-4777.
[7] M. Hatamian, H. Barati, Priority-based congestion control mechanism for wireless sensor networks using fuzzy
logic, Proceeding of the 6th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Dallas-Fortworth, TX, USA, (2015), 1-5.
[8] S. Jaiswal, A. Yadav, Fuzzy based adaptive congestion control in wireless sensor networks, Contemporary Computing
(IC3), Proceeding of the International Conference on IEEE, Noida, India, (2013), 433-438.
[9] M. Ka , B. J. Othman, A. Ouadjaout, M. Bagaa, N. Badache, REFIACC: Reliable, ecient, fair and interference-
aware congestion control protocol for wireless sensor networks, Computer Communications, 101 (2017), 1-11.
[10] P. Maheshwari, A. K. Sharma, K. Verma, Energy ecient cluster based routing protocol for WSN using butter y
optimization algorithm and ant colony optimization, Ad Hoc Networks, 110 (2021), 1-52.
[11] U. Majeed, A. N. Malik, N. Abbas, W. Abbass, An energy-ecient distributed congestion control protocol for
wireless multimedia sensor networks, Electronics, 11(20) (2022), 3265.
[12] M. S. Manshahia, M. Dave, S. B. Singh, Bio inspired congestion control mechanism for Wireless Sensor Networks,
Proceeding of the International Conference on Computational Intelligence and Computing Research (ICCIC), Madu-
rai, India, (2015), 1-6.
[13] T. Mekni, I. K. Taarit, M. Ksouri, Adaptive neuro-fuzzy inference system congestion detection protocol, Proceeding
of the International Conference on Advanced Systems and Electric Technologies (IC ASET), Hammamet, Tunisia,
(2018), 363-368.
[14] T. K. Mishra, K. S. Sahoo, M. Bilal, S. C. Shah, M. K. Mishra, Adaptive congestion control mechanism to enhance
TCP performance in cooperative IoV, IEEE Access, 11 (2023), 9000-9013.
[15] H. N. Nhu, S. Nitsuwat, M. Sodanil, Prediction of stock price using an adaptive neuro-fuzzy inference system trained
by re y algorithm, Proceeding of the International Computer Science and Engineering Conference, Nakhonpathom,
Thailand, (2013), 302-307.
[16] C. J. Raman, V. James, FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal
routing algorithm, Cluster Computing, 22 (2019), 12701-12711.
[17] S. J. Shene, W. R. S. Emmanuel, V. K. Stephen, Review on energy conservation and congestion mechanism in
mobile WSN: Taxonomy, software programs, challenges, and future trends, Wireless Networks, 29(6) (2023), 2649-
2669.
[18] K. Singh, K. Singh, A. Aziz, Congestion control in wireless sensor networks by hybrid multi-objective optimization
algorithm, Computer Networks, 138 (2018), 90-107.
[19] K. Thangaramya, K. Kulothungan, S. Indira Gandhi, M. Selvi, S. V. N. Santhosh Kumar, K. Arputharaj, Intelligent
fuzzy rule-based approach with outlier detection for secured routing in WSN, Soft Computing, 24(21) (2020), 16483-
16497.
[20] K. Thangavel, A. K. Mohideen, Mammogram classi cation using ANFIS with ant colony optimization based learn-
ing, Digital Connectivity{Social Impact: 51st Annual Convention of the Computer Society of India, CSI 2016,
Coimbatore, India, (2016), 141-152.
[21] J.Wei, B. Fan, Y. Sun, A congestion control scheme based on fuzzy logic for wireless sensor networks, Proceeding of
the 9th International Conference on Fuzzy Systems and Knowledge Discovery, Chongqing, China, (2012), 501-504.
[22] S. L. Yadav, R. L. Ujjwal, Mitigating congestion in wireless sensor networks through clustering and queue assistance:
A survey, Journal of Intelligent Manufacturing, 32(8) (2021), 2083-2098.
[23] M. Zarei, A. M. Rahmani, R. Farazkish, S. Zahirnia, FCCTF: Fairness congestion control for a dis trustful wireless
sensor network using fuzzy logic, Proceeding of the 10th International Conference on Hybrid Intelligent Systems,
Atlanta, GA, USA, (2010), 1-6.
[24] Y. Zhu, G. X. Wang, C. J. Li, Weighted approximation of fuzzy numbers by using mn-step type fuzzy number,
Iranian Journal of Fuzzy Systems, 20(3) (2023), 147-158.