\bibitem{Ba-Fb}
B. Altay and F. Ba\d{s}ar, \emph{Some new spaces of double sequences}, J. Math. Anal. Appl., \textbf{309(1)} (2005), 70--90.
\bibitem{altýn}
H. Alt{\i}nok, Y. Alt{\i}n and M. I\d{s}{\i}k, \emph{Statistical convergence and strong p-Ces\'{a}ro summability of order $\beta$ in sequences of fuzzy numbers}, Iranian Journal of Fuzzy
Systems, \textbf{9(2)} (2012), 63--73.
\bibitem{bede}B. Bede and S. G. Gal, \textit{Almost periodic fuzzy-number-valued functions},
Fuzzy Sets and Systems, \textbf{147} (2004), 385--403.
\bibitem{cc-ba}
\d{C}. CÇakan and B. Altay, \emph{Statistically boundedness and statistical core
of double sequences}, J. Math. Anal. Appl., \textbf{317} (2006), 690--697.
\bibitem{das 1}
P. Das, P. Kostyrko, W. Wilczy\'{n}ski and P. Malik, \emph{I and
$I^{*}$-convergence of double sequences}, Math. Slovaca, \textbf{58(5)} (2008), 605--620.
\bibitem{das 2}
P. Das and P. Malik, \emph{On extremal I-limit points of double
sequences}, Tatra Mt. Math. Publ., \textbf{40} (2008), 91--102.
\bibitem{edba FU}
E. D\"{u}ndar and B. Altay \emph{$\mathcal{I}_2$-uniform convergence of double
sequences of functions}, (under communication).
\bibitem{fang}J. X. Fang and H. Huang, \textit{On the level convergence of a
sequence of fuzzy numbers}, Fuzzy Sets and Systems, \textbf{147} (2004), 417-415.
\bibitem{fast}
H. Fast, \emph {Sur la convergence statistique}, Colloq. Math.,
\textbf{2} (1951), 241--244.
\bibitem{fr-st}
J. A. Fridy, \emph{On statistical convergence}, Analysis,
\textbf{5} (1985), 301--313.
\bibitem{fr- c.o}
J. A. Fridy and C. Orhan, \emph{Statistical limit superior and inferior}, Proc. Amer. Math. Soc., \textbf{125} (1997), 3625--3631.
\bibitem{fr-st-lim}
J. A. Fridy, \emph{Statistical limit points}, Proc. Amer. Math. Soc.,
\textbf{118} (1993), 1187--1192.
\bibitem{kos1}
P. Kostyrko, T. \u{S}al\'{a}t and W. Wilczy\'{n}ski, \emph{I-convergence},
Real Anal. Exchange, \textbf{26(2)} (2000), 669-686.
\bibitem{kos2}
P. Kostyrko, M. Ma\v{c}aj, T. \u{S}al\'{a}t and M. Sleziak, \emph{I-convergence
and extremal I-limit points}, Math. Slovaca, \textbf{55} (2005), 443--464.
\bibitem{kumar 1}
V. Kumar, \emph{On I and $I^{*}$-convergence of double sequences},
Math. Commun., \textbf {12} (2007), 171--181.
\bibitem{kumar F}
V. Kumar and K. Kumar, \emph{On the ideal convergence of sequences of fuzzy numbers}, Information Sciences, \textbf{178} (2008), 4670--4678.
\bibitem{Matloka}
M. Matloka, \emph{Sequences of fuzzy numbers}, Busefal, \textbf{28} (1986), 28--37.
\bibitem{murse-st}
Mursaleen and O. H. H. Edely, \emph{Statistical convergence of double
sequences}, J. Math. Anal. Appl., \textbf{288} (2003), 223--231.
\bibitem{Nanda}
S. Nanda, \emph{On sequences of fuzzy numbers}, Fuzzy Sets and Systems, \textbf{33} (1989), 123--126.
\bibitem{nabiev}
A. Nabiev, S. Pehlivan and M. G\"{u}rdal, \emph{On I-Cauchy sequence},
Taiwanese J. Math., \textbf {11(2)} (2007), 569--576.
\bibitem{nuray}
F. Nuray and W. H. Ruckle, \emph{Generalized statistical convergence and convergence free spaces}, J. Math. Anal. Appl., \textbf{245} (2000), 513--527.
\bibitem{nuray 2}
F. Nuray, \emph{Lacunary statistical convergence of sequences of fuzzy numbers},
Fuzzy Sets and Systems, \textbf{99} (1998), 353--355.
\bibitem{nuray 3}
F. Nuray and E. Sava\d{s}, \emph{Statistical convergence of sequences of fuzzy numbers}, Math. Slovaca, \textbf{45(3)} (1995), 269--273.
\bibitem{prinsgheim}
A. Pringsheim, \emph{Zur theorie der zweifach unendlichen Zahlenfolgen},
Math. Ann., \textbf{53} (1900), 289--321.
\bibitem{rath}
D. Rath and B. C. Tripaty, \emph{On statistically convergence and
statistically Cauchy sequences}, Indian J. Pure Appl. Math., \textbf{25(4)} (1994), 381--386.
\bibitem{saadati}
R. Saadati, \emph{On the I-fuzzy topological spaces}, Chaos, Solitons and Fractals,
\textbf{37} (2008), 1419--1426.
\bibitem{salat st}
T. \u{S}al\'{a}t, \emph {On statistically convergent sequences of
real numbers}, Math. Slovaca, \textbf{30} (1980), 139--150.
\bibitem{Salat}
T. \u{S}al\'{a}t, B. C. Tripaty and M. Ziman, \emph{On I-convergence
field}, Ital. J. Pure Appl. Math., \textbf {17} (2005), 45--54.
\bibitem{Savas1}
E. Sava\d{s}, \emph{On statistical convergent sequences of fuzzy numbers},
Information Sciences, \textbf{137} (2001), 277--282.
\bibitem{Savas2}
E. Sava\d{s} and Mursaleen, \emph{On statistically convergent
double sequences of fuzzy numbers}, Information Sciences, \textbf{162} (2004), 183--192.
\bibitem{Savas3}
E. Sava\d{s}, \emph{A note on double sequences of fuzzy numbers}, Turk. Jour. Math., \textbf{20(20)} (1996), 175--178.
\bibitem{Savas4}
E. Sava\d{s}, \emph{$(A)_{\Delta}$-double sequence spaces of fuzzy numbers via orlicz function}, Iranian Journal of Fuzzy
Systems, \textbf{8(2)} (2011), 91--103.
\bibitem{scho}
I. J. Schoenberg, \emph {The integrability of certain functions and
related summability methods}, Amer. Math. Monthly, \textbf {66}
(1959), 361--375.
\bibitem{otfb}
\"{O}. Talo and F. Ba\d{s}ar, \emph{Determination of the
duals of classical sets of sequences of fuzzy numbers and related
matrix transformations}, Comput. Math. Appl., \textbf{58} (2009),
717--733.
\bibitem{tri 1}
B. Tripathy and B. C. Tripathy, \emph{On I-convergent double
sequences}, Soochow J. Math., \textbf {31} (2005), 549--560.
\bibitem{tri 2}
B. C. Tripathy, \emph{Statistically convergent double sequences}, Tamkang J. Math., \textbf{34(3)} (2003), 231--237.
\bibitem{tri 3}
B. C. Tripathy and B. Sarma, \emph{Double sequence spaces of fuzzy numbers defined by Orlicz function}, Acta Math. Sci., \textbf{31B(1)} (2011), 134--140.
\bibitem{z}
L. A. Zadeh, \textit{Fuzzy sets}, Information and Control, \textbf{8}(1965), 338--353.