[1] T. Bag and S. K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy
Sets and Systems, 159(6) (2008), 670{684.
[2] T. Bag and S. K. Samanta, Fixed point theorems in Felbin type fuzzy normed linear spaces,
The Journal of Fuzzy Mathematics, to appear.
[3] C. Borelli and G. L. Forti, On a general Hyers{Ulam stability result, Internat. J. Math. Math.
Sci., 18 (1995), 229{236.
[4] S. Czerwik, The stability of the quadratic functional equation, in: Th. M. Rassias, J. Tabor,
eds., Stability of Mappings of Hyers{Ulam Type, Hadronic Press, Florida, (1994), 81{91.
[5] V. A. Faiziev, T. M. Rassias and P. K. Sahoo, The space of ( ;
)- additive mappings on
semigroup, Trans. Amer. Math. Soc., 354(11) (2002), 4455{4472.
[6] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992),
239-248.
[7] T. Gantner, R. Steinlage and R. Warren, Compactness in fuzzy topological spaces, J. Math.
Anal. Appl., 62 (1978) 547562.
[8] P. Gavruta, A generalization of the Hyers{Ulam{Rassias stability of approximately additive
mappings, J. Math. Anal. Appl., 184 (1994), 431{436.
[9] U. Hoehle, Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic, Fuzzy
Sets and Systems, 24 (1987) 263-278.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A.,
27 (1941), 222{224.
[11] K. Jun, H. Kim and J. M. Rassias, Extended Hyers{Ulam stability for Cauchy{Jensen map-
pings, J. Dierence Equ. Appl., 13 (2007), 1139{1153.
[12] K. Jun and Y. Lee, On the Hyers{Ulam{Rassias stability of a Pexiderized quadratic inequal-
ity, Math. Inequal. Appl., 4 (2001), 93{118.
[13] S. M. Jung, Hyers{Ulam{Rassias stability of functional equations in nonlinear analysis,
Springer Science, New York, 2011.
[14] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
215-229.
[15] O. Kaleva, The completion of fuzzy metric spaces, J. Math. Anal. Appl., 109 (1985), 194-198.
[16] O. Kaleva, A comment on the completion of fuzzy metric spaces, Fuzzy Sets and Systems,
159(16) (2008), 2190-2192.
[17] P. Kannappan, Functional equations and inequalities with applications, Springer Science,
New York, 2009.
[18] R. Lowen, Fuzzy set theory, Ch. 5 : Fuzzy Real Numbers, Kluwer, Dordrecht, 1996.
[19] A. Maturo, On some structures of fuzzy numbers, Iranian Journal of Fuzzy Systems, 6 (2009),
49{59.
[20] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy version of Hyers-Ulam-Rassias theorem,
Fuzzy Sets and Systems, 159(6) (2008), 720-729.
[21] F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional
equation of n-Apollonius type in C-algebras, Abstract and Applied Analysis, 2008, Article
ID 672618, 13 pages, 2008. doi:10.1155/2008/672618.
[22] F. Moradlou, A. Najati and H. Vaezi, Stability of homomorphisms and derivations on C-
ternary rings associated to an Euler{Lagrange type additive mapping, Result. Math., 55
(2009), 469-486.
[23] M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Dier-
ence Equ. Appl., 11 (2005), 999{1004.
[24] C. Park, Modied Trif 's functional equations in Banach modules over a C-algebra and
approximate algebra homomorphisms, J. Math. Anal. Appl., 278 (2003), 93{108.
[25] C. Park, On an approximate automorphism on a C-algebra, Proc. Amer. Math. Soc., 132
(2004), 1739{1745.
[26] C. Park and T. M. Rassias, Hyers{Ulam stability of a generalized Apollonius type quadratic
mapping, J. Math. Anal. Appl., 322 (2006), 371{381.
[27] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J.
Funct. Anal., 46 (1982), 126{130.
[28] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull.
Sci. Math., 108 (1984), 445{446.
[29] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57 (1989), 268{273.
[30] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
Soc., 72 (1978), 297{300.
[31] T. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equa-
tions, Aequationes Math., 39 (1990), 292{293.
[32] T. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J.
Math. Anal. Appl., 246 (2000), 352{378.
[33] T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal.
Appl., 251 (2000), 264{284.
[34] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl.
Math., 62 (2000), 23{130.
[35] S. E. Rodabaugh, Fuzzy addition in the L-fuzzy real line, Fuzzy Sets and Systems, 8 (1982)
3951.
[36] I. Sadeqi and M. Salehi, Fuzzy compacts operators and topological degree theory , Fuzzy Sets
and Systems, 160(9) (2009), 1277-1285.
[37] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53
(1983), 113{129.
[38] S. M. Ulam, A collection of the mathematical problems, Interscience Publ. New York, 1960.
[39] J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear
space, Fuzzy Sets and Systems, 125 (2002), 153-161.
[40] J. Xiao and X. Zhu, Topological degree theory and xed point theorems in fuzzy normed space,
Fuzzy Sets and Systems, 147 (2004), 437-452.