COMMON FIXED POINT THEOREMS IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACES

Document Type : Research Paper

Authors

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

2 Departament de Matematica Aplicada III (MA3), Universitat Politecnica de Catalunya, Colom 1, 08222 Terrassa (Barcelona), Spain

3 Department of Applied Mathematics, Aligarh Muslim University, Aligarh 202002, India

Abstract

In this paper, we introduce a new class of implicit functions and also common property (E.A) in modified intuitionistic fuzzy metric spaces and utilize the same to prove some common fixed point theorems in modified intuitionistic fuzzy metric spaces besides discussing related results and illustrative examples. We are not aware of any paper dealing with such implicit functions in modified intuitionistic fuzzy metric spaces.

Keywords


bibitem {Aamri} M. Aamri and D. El Moutawakil, {em Some new common fixed point theorems under strict contractive conditions}, J. Math. Anal. Appl., {bf 270} (2002), 181-188.
bibitem {Abbas} M. Abbas, M. Imdad and D. Gopal, {em $psi-$weak contractions in fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 8(5)} (2011), 141-148.
bibitem {Alaca} C. Alaca, D. Turkoglu and C. Yildiz, {em Fixed point in intuitionistic fuzzy metric spaces}, Chaos Solitons Fractals, {bf 29} (2006), 1073-1078.
bibitem {Ali} J. Ali and  M. Imdad, {em An implicit function implies several contraction conditions}, Sarajevo J. Math., {bf 17(4)} (2008), 269-285.
bibitem {Altun} I. Altun, {em Some fixed point theorems for single and multivalued mappings on ordered non-Archimedean fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 7(1)} (2010), 91-96.
bibitem {Atanassov86} K. T. Atanassov, {em Intuitionistic fuzzy sets}, Fuzzy Sets and Systems, {bf 20} (1986), 87-96.
bibitem {Deschrijver} G. Deschrijver and E. E. Kerre, {em On the relationship between some extensions of fuzzy set theory}, Fuzzy Sets and Systems, {bf 133} (2003), 227-235.
bibitem {Naschie06} M. S. El Naschie, {em On the verification of heterotic strings theory and $epsilon^{infty}$ theory}, Chaos Solitons Fractals, {bf 11} (2000), 2397-2408.
bibitem {Naschie2006} M. S. El Naschie, {em The two-slit experiment as the foundation of E-infinity of high energy physics}, Chaos Solitons Fractals, {bf 25} (2005), 509-514.
bibitem {Fang} J. X. Fang, {em On fixed point theorems in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 46} (1992), 107-113.
bibitem {Veeramani94} A. George and P. Veeramani, {em On some results in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 64} (1994), 395-399.
bibitem {Grabiec} M. Grabiec, {em Fixed points in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf 27} (1988), 385-389.
bibitem {Gregori} V. Gregori, S. Romaguera and P. Veeramani, {em A note on intuitionistic fuzzy metric spaces}, Chaos Solitons Fractals, {bf 28} (2006), 902-905.
bibitem {Huang} X. Huang, C. Zhu and X. Wen, {em Common fixed point theorems for families of compatible mappings in intuitionistic fuzzy metric spaces}, Ann. Univ. Ferrara, {bf 56} (2010), 305-326.
bibitem{Imdad06} M. Imdad and J. Ali, {em Some common fixed point theorems in fuzzy metric spaces}, Math. Commun., {bf 11} (2006), 153-163.
bibitem{Imdad08} M. Imdad and J. Ali, {em A general fixed point theorem in fuzzy metric spaces via an implicit function}, J. Appl. Math. Informatics, {bf 26} (2008), 591-603.
bibitem {Imdad09} M. Imdad, J. Ali and M. Tanveer, {em Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces}, Chaos Solitons Fractals, {bf 42} (2009), 3121-3129.
bibitem {Jungck} G. Jungck, {em Common fixed points for noncontinuous nonself maps on nonmetric
spaces}, Far East J. Math. Sci., {bf 4(2)} (1996), 199-215.
bibitem {Klement84} E. P. Klement, {em Operations on fuzzy sets- an axiomatic approach}, Information Sciences, {bf 27} (1982), 221-232.
bibitem {Kramosil75} O. Kramosil and J. Michalek, {em Fuzzy metric and statistical metric spaces}, Kybernetica, {bf 11} (1975), 326-334.
bibitem {Liu} Y. Liu, Jun Wu and Z. Li, {em Common fixed points of single-valued and multi-valued maps}, Internat. J. Math. Math. Sci., {bf 19} (2005), 3045-3055.
bibitem {PantV} V. Pant, {em Some fixed point theorems in fuzzy metric space}, Tamkang J. Math., {bf 40(1)} (2009), 59-66.
bibitem {Park} J. H. Park, {em Intuitionistic fuzzy metric spaces}, Chaos Solitons Fractals, {bf 22} (2004), 1039-1046.
bibitem {Rodriguez} L.J. Rodriguez and S. Ramaguera, {em The Hausdorff fuzzy metric on compact sets}, Fuzzy Sets Syst., {bf 147} (2004), 273–283.
bibitem {Romaguera} S. Romaguera and P. Tirado, {em On fixed point theorems in intuitionistic fuzzy metric spaces}, Internat. J. Nonlinear Sci. Numer. Siml., {bf 8} (2007), 233-238.
bibitem {Saadati} R. Saadati and J. H. Park, {em On the intuitionistic topological spaces}, Chaos Solitons Fractals, {bf 27} (2006), 331-344.
bibitem {Saadati08} R. Saadati, S. Sedghi and N. Shobe, {em Modified intuitionistic fuzzy metric spaces and some fixed point theorems}, Chaos Solitons Fractals, {bf 38} (2008), 36–47.
bibitem {Schweizer} B. Schweizer and A. Sklar, {em Statistical metric spaces}, Pacific J. Math., {bf 10} (1960), 313-334.
bibitem {Sedghi} S. Sedghi, K. P. R. Rao and N. Shobe, {em A common fixed point theorem for six weakly compatible mappings in $M-$ fuzzy metric spaces}, Iranian Journal of Fuzzy Systems, {bf 5(2)} (2008), 49-62.
bibitem {Turkoglu06} D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz, {em Common fixed point theorems in intuitionistic fuzzy metric spaces}, J. Appl. Math. Computing, {bf 22} (2006), 411-424.
bibitem {Vijayaraju} P. Vijayaraju and Z. M. I. Sajath, {em Some common fixed point theorems in fuzzy metric spaces}, Int. J. Math. Anal., {bf 15(3)} (2009), 701-710.
bibitem {Zadeh} L. A. Zadeh, {em Fuzzy sets}, Information and Control, {bf 8} (1965), 338-353.