SOME RESULTS ON t-BEST APPROXIMATION IN FUZZY n-NORMED SPACES

Document Type : Research Paper

Authors

1 Turkish Military Academy, Cankaya, 06580, Ankara, Turkey

2 Department of Mathematics, Faculty of Science and Arts, Gazi University, Teknikokullar, 06500 Ankara, Turkey

Abstract

The aim of this paper is to give the set of all t -best approximations on fuzzy n-normed spaces and prove some theorems in the sense of Vaezpour and Karimi [13].
 
 

Keywords


[1] C. Alaca, A new perspective to the Mazur-Ulam problem in 2-fuzzy 2-normed linear spaces,
Iranian Journal of Fuzzy Systems, 7(2) (2010), 109-119.
[2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math.,
11(3) (2003), 687-705.
[3] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151
(2005), 513-547.
[4] H. Efe and C. Yildiz, Some results in fuzzy compact linear operators, Journal of Computational
Analysis Applications, 12(1-B) (2010), 251-262.
[5] S. Gahler, Lineare 2-normierte Raume, Math. Nachr., 28 (1964), 1-43.
[6] S. Gahler, Untersuchungen uber verallgemeinerte m-metrische Raume, I, Math. Nachr., 40
(1969), 165-189.
[7] M. Goudarzi and S. M. Vaezpour, Best simultaneous approximaton in fuzzy normed spaces,
Iranian Journal of Fuzzy Systems, 7(3) (2010), 87-96.
[8] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27(10) (2001),
631-639.
[9] N. Huang and H. Lan, A couple of nonlilear equaions with fuzzy mappings in fuzzy normed
spaces, Fuzzy Sets and Systems, 152 (2005), 209-222.
[10] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math.,
29(4) (1996), 739-744.
[11] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21(47) (1997), 81-102.
[12] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
[13] A. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci., 24
(2005), 3963-3977.
[14] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces,
Springer-Verlag, 1970.
[15] S. M. Vaezpour and F. Karimi, t-Best approximation in fuzzy normed spaces, Iranian Journal
of Fuzzy Systems, 5(2) (2008), 93-99.
[16] S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n-normed linear space, Journal of
Fundamental Sci., 3(1) (2007), 119-126.
[17] S. Vijayabalaji and N. Thillaigovindan, Best approximation sets in n-normed space corresponding
to intuitionistic fuzzy n-normed linear space, Iranian Journal of Fuzzy Systems,
5(3) (2008), 57-69.
[8] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27(10) (2001),
631-639.
[9] N. Huang and H. Lan, A couple of nonlilear equaions with fuzzy mappings in fuzzy normed
spaces, Fuzzy Sets and Systems, 152 (2005), 209-222.
[10] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math.,
29(4) (1996), 739-744.
[11] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21(47) (1997), 81-102.
[12] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
[13] A. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci., 24
(2005), 3963-3977.
[14] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces,
Springer-Verlag, 1970.
[15] S. M. Vaezpour and F. Karimi, t-Best approximation in fuzzy normed spaces, Iranian Journal
of Fuzzy Systems, 5(2) (2008), 93-99.
[16] S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n-normed linear space, Journal of
Fundamental Sci., 3(1) (2007), 119-126.
[17] S. Vijayabalaji and N. Thillaigovindan, Best approximation sets in n-normed space corresponding
to intuitionistic fuzzy n-normed linear space, Iranian Journal of Fuzzy Systems,
5(3) (2008), 57-69.