bibitem{AHS:Abstract}
J. Ad'{a}mek, H. Herrlich and G. E. Strecker, {it Abstract and concrete
categories}, John Wiley & Sons, New York, 1990.
bibitem{Chang:Fuzzy}
C. L. Chang, {it Fuzzy topological spaces}, J. Math. Anal. Appl., {bf 24} (1968), 182-190.
bibitem{FY:Base}
J. Fang and Y. Yue, {it Base and subbase in $I$-fuzzy
topological space}, J. Math. Res. Exposition, {bf 26} (2006), 89-95.
bibitem{GHKL:Cont}
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislowe and
D. S. Scott, {it Continuous lattices and domains}, Cambridge University Press, Cambridge, 2003.
bibitem{GHK:Comp}
G. Gierz, K. H. Hofmann, K. Keimel and et al., {it A compendium
of continuous lattices}, Springer, Berlin, 1980.
bibitem{Hh:Upper}
U. H"{o}hle, {it Upper semicontinuous fuzzy sets and
applications}, J. Math. Anal. Appl., {bf 78} (1980), 659-673.
bibitem{HhSo:Afff}
U. H"{o}hle and A. P. v{S}ostak, {it Axiomatic
foundations of fixed-basis fuzzy topology}, In: U. H"{o}hle, S. E.
Rodabaugh, eds., Mathematic of Fuzzy Sets-Logic, Topology and
Measure Theory, Kluwer Academic Publishers, Boston/Dordrecht/London,
(1999), 123-272.
bibitem{Kub:ft}
T. Kubiak, {it On fuzzy topologies}, Ph.D. Thesis, Adam
Mickiewicz, Poznan, Poland, 1985.
bibitem{LSG:Con}
S. G. Li, {it Connectedness and local connectedness in Lowen spaces},
Fuzzy Sets and Systems, {bf 158} (2007), 85-98.
bibitem{LLF:IC}
S. G. Li, H. Y. Li and W. Q. Fu, {it (IC)$L$-cotopological
spaces}, Fuzzy Sets and Systems, {bf 158} (2007), 1226-1236.
bibitem{Low:Fts}
R. Lowen, {it Fuzzy topological spaces and fuzzy compactness},
J. Math. Anal. Appl., {bf 56} (1976), 621-633.
bibitem{Macl:Categ}
S. Maclane, {it Categories for working mathematicians}, Springer, Berlin, 1971.
bibitem{Mar:Weakly}
H. W. Martin, {it Weakly induced fuzzy topological spaces},
J. Math. Anal. Appl., {bf 78} (1980), 634-639.
bibitem{rodab:Pofft}
S. E. Rodabaugh, {it Powerset operator foundations for poslat fuzzy
set theories and topologies}, In: U. H"{o}hle, S. E. Rodabaugh,
eds., Mathematics of Fuzzy Sets: Logic, Topology and Measure
Theory, The Handbooks of Fuzzy Sets Series,
Kluwer Academic Publishers, Dordrecht, Chapter 2, {bf 3} (1999), 91-116.
bibitem{Rodab;Cafft}
S. E. Rodabaugh, {it Categrical foundations of
variable-basis fuzzy topology}, In: U. H"{o}hle, S.
E. Rodabaugh, eds., Mathematic of Fuzzy Sets-Logic, Topology and
Measure Theory, Kluwer Academic Publishers, Boston/Dordrecht/London, Chapter 4,
(1999), 273-388.
bibitem{So:Bsft}
A. P. v{S}ostak, {it Basic structures of fuzzy topology}, J. Math. Sciences, {bf 78} (1996), 662-701.
bibitem{So:Fts}
A. P. v{S}ostak, {it On a fuzzy topological
structure}, Rend. Ciecolo Mat. Palermo (Suppl.Ser.II), {bf 11} (1985), 89-103.
bibitem{So:Tdft}A. P. v{S}ostak, {it Two decades of fuzzy topology: basic ideas, notions and results}, Russian Math. Surveys,
{bf 44} (1989), 125-186.
bibitem{Wei:Fixed}
M. D. Weiss, {it Fixed points, separation and induced topologies
for fuzzy sets}, J. Math. Anal. Appl., {bf 50} (1975), 142-150.
bibitem{Yao;Net}
W. Yao, {it Net-theoretical $L$-generalized convergence spaces}, Iranian Journal of Fuzzy Systems, {bf 8} (2011), 121-131.
bibitem{Yue:Ind}
Y. Yue, {it Lattice-valued induced fuzzy topological spaces}, Fuzzy Sets
and Systems, {bf 158} (2007), 1461-1471.
bibitem{Zh:Lft}
D. Zhang, {it $L$-fuzzifying topologies as $L$-topologies},
Fuzzy Sets and Systems, {bf 125} (2002), 135-144.