Numerical solutions of fuzzy nonlinear integral equations of the second kind

Document Type : Research Paper

Authors

Department of Mathematics, Firoozkooh Branch, Islamic Azad Univer- sity, Firoozkooh, Iran

Abstract

In this paper, we use the parametric form of fuzzy numbers, and an
iterative approach for obtaining approximate solution for a class
of fuzzy nonlinear Fredholm integral equations of the second kind
is proposed. This paper presents a method based on Newton-Cotes
methods with positive coefficient. Then we obtain approximate
solution of the fuzzy nonlinear integral equations by an iterative
approach.

Keywords


\bibitem{aba} S. Abbasbandy, E. Babolian and M. Alavi, {\it Numerical
method for solving linear fredholm fuzzy integral equations of
the second kind}, Chaos Solitons \& Fractals, {\bf 31} (2007), 138-146.
\bibitem{al1} T. Allahviranloo and M. Otadi, {\it Gaussian quadratures for approximate of fuzzy integrals}, Applied Mathematics and Computation, {\bf 170} (2005), 874-885.
\bibitem{al2} T. Allahviranloo and M. Otadi, {\it Gaussian quadratures for approximate of fuzzy multiple integrals}, Applied Mathematics and Computation, {\bf 172} (2006), 175-187.
\bibitem{at} K. E. Atkinson, {\it An introduction to numerical analysis},
New York: Wiley, 1987.
\bibitem{bsa} E. Babolian, H. S. Goghary and S. Abbasbandy, {\it Numerical
solution of linear fredholm fuzzy integral equations of the
second kind by Adomian method}, Applied Mathematics and
Computation, {\bf 161} (2005), 733-744.
\bibitem{baker} C. T. H. Baker, {\it A perspective on the numerical
treatment of volterra equations}, Journal of Computational and Appllied Mathematics, {\bf 125} (2000), 217-249.
\bibitem{bgggp} M. I. Berenguer, D. Gamez, A. I. Garralda-Guillem, M.
Ruiz Galan and M. C. Serrano Perez, {\it Biorthogonal systems for solving
volterra integral equation systems of the second kind}, Journal of Computational and Appllied Mathematics, {\bf 235} (2011), 1875-1883.
\bibitem{b} A. M. Bica, {\it Error estimation in the approximation of
the solution of nonlinear fuzzy fredholm integral equations},
Information Sciences, {\bf 178} (2008), 1279-1292.
\bibitem{bf} A. H. Borzabadi and O. S. Fard, {\it A numerical scheme for
a class of nonlinear fredholm integral equations of the second
kind}, Journal of Computational and Applied Mathematics, {\bf 232} (2009), 449-454.
\bibitem{cz} S. S. L. Chang and L. Zadeh, {\it On fuzzy mapping and control},
IEEE Trans. System Man Cybernet, {\bf 2} (1972), 30-34.
\bibitem{ct} Y. Chen and T. Tang, {\it Spectral methods for weakly
singular volterra integral equations with smooth solutions}, Journal of Computational and Appllied Mathematics, {\bf 233} (2009), 938-950.
\bibitem{cm} W. Congxin and M. Ming, {\it On embedding problem of fuzzy
number spaces}, Part 1, Fuzzy Sets and Systems, {\bf 44} (1991), 33-38.
\bibitem{dd} D. Dubois and H. Prade, {\it Operations on fuzzy numbers}, International Journal of Systems Science, {\bf 9} (1978), 613-626.
\bibitem{dp} D. Dubois and H. Prade, {\it Towards fuzzy differential
calculus}, Fuzzy Sets and Systems, {\bf 8} (1982), 1-7.
\bibitem{ez} R. Ezzati and S. Ziari, {\it Numerical solution and error estimation of fuzzy fredholm integral equation using fuzzy bernstein polynomials}, Australian Journal of Basic and Applied Sciences, {\bf 5} (2011), 2072-2082.
\bibitem{fp} M. A. Fariborzi Araghi and N. Parandin, {\it Numerical solution of fuzzy fredholm integral equations
by the lagrange interpolation based on the extension principle}, Soft Computing, {\bf 15} (2011), 2449-2456.
\bibitem{fmk} M. Friedman, M. Ma and A. Kandel, {\it Numerical solutions
of fuzzy differential and integral equations}, Fuzzy Sets and
Systems, {\bf 106} (1999), 35-48.
\bibitem{fmk2} M. Friedman, M. Ma and A. Kandel, {\it Solution to the fuzzy
integral equations with arbitrary kernels}, International Journal of Approximate Reasoning, {\bf 20} (1999), 249-262.
\bibitem{gv} R. Goetschel and W. Vaxman, {\it Elementary fuzzy calculus}, Fuzzy
Sets and Systems, {\bf 18} (1986), 31-43.
\bibitem{h} H. Hochstadt, {\it Integral equations}, New York: Wiley,
1973.
\bibitem{kg} A. Kaufmann and M. M. Gupta, {\it Introduction fuzzy
arithmetic}, Van Nostrand Reinhold, New York, 1985.
\bibitem{kal}O. Kaleva, {\it Fuzzy differential equations}, Fuzzy Sets and
Systems, {\bf 24} (1987), 301-317.
\bibitem{kauthen} J. P. Kauthen, {\it Continuous time collocation method
for volterra-fredholm integral equations}, Numerische Math., {\bf 56} (1989),
409-424.
\bibitem{kcy} G. J. Klir, U. S. Clair and B. Yuan, {\it Fuzzy set theory:
foundations and applications}, Prentice-Hall, 1997.
\bibitem{linz} P. Linz, {\it Analytical and numerical methods for
volterra equations}, SIAM, Philadelphia, PA, 1985.
\bibitem{mfk} M. Ma, M. Friedman and A. Kandel, {\it A new fuzzy
arithmetic}, Fuzzy Sets and Systems, {\bf 108} (1999), 83-90.
\bibitem{mola} A. Molabahrami, A. Shidfar and A. Ghyasi, {\it An analytical method for solving linear fredholm fuzzy integral equations of the second kind}, Computers \& Mathematics with Applications, {\bf 61} (2011), 2754-2761.
\bibitem{mo11} M. Mosleh and M. Otadi, {\it Numerical solution of fuzzy integral equations using Bernstein polynomials}, Australian Journal of Basic Applied Sciences, {\bf 5} (2011), 724-728.
\bibitem{pf1} N. Parandin and M. A. Fariborzi Araghi, {\it The approximate solution of linear fuzzy fredholm integral equations of the second kind by using iterative interpolation}, World Academy of Science, Engineering and Technology, {\bf 49} (2009), 947-984.
\bibitem{pf2} N. Parandin and M. A. Fariborzi Araghi, {\it The numerical solution of linear fuzzy fredholm integral equations of the second kind by using finite and divided differences methods}, Soft Computing, {\bf 15} (2010), 729-741.
\bibitem{pr} M. L. Puri and D. Ralescu, {\it Fuzzy random variables}, Journal of
Mathematical Analysis and Applications, {\bf 114} (1986), 409-422.
\bibitem{fard} O. Solaymani Fard and M. Sanchooli, {\it Two successive schemes for numerical solution of linear fuzzy fredholm integral equations of the second kind}, Australian Journal of Basic Applied Sciences, {\bf 4} (2010), 817-825.
\bibitem{sy} H. H. Sorkun and S. Yalcinbas, {\it Approximate solutions of
linear volterra integral equation systems with variable
coefficients}, Applied Mathematical Modelling, {\bf 34} (2010), 3451-3464.
\bibitem{sb} J. Stoer and R. Bulirsch, {\it Introduction to numerical
analysis}, Springer-Verlag,New York, 1993.
\bibitem{laz} L. A. Zadeh, {\it The concept of a linguistic variable
and its application to approximate reasoning}, Information Sciences, {\bf 8} (1975), 199-249.