H\"{o}lder summability method of fuzzy numbers and a Tauberian theorem

Document Type : Research Paper

Author

Department of Mathematics, Ege University, 35100, Izmir, Turkey

Abstract

In this paper we establish a Tauberian condition under which convergence follows from H\"{o}lder summability of sequences of fuzzy  numbers.

Keywords


\bibitem{y5} Y. Altin, M. Et and M. Basarir, {\it On some generalized difference sequences of fuzzy numbers}, Kuwait J. Sci. Eng., {\bf 34}\textbf{(1A)} (2007), 1--14.

\bibitem{y4} Y. Altin, M. Mursaleen and H. Altinok, {\it Statistical summability $(C,1)$ for sequences of fuzzy real numbers and a Tauberian theorem}, J. Intell. Fuzzy Syst., {\bf 21}\textbf{(6)} (2010), 379--384.

\bibitem{alt1} H. Altinok, Y. Altin and M. Isik, {\it Statistical convergence and strong $p$-Ces\`{a}ro summability of order $\beta$ in sequences of fuzzy numbers}, Iranian Journal of Fuzzy Systems, {\bf 9}\textbf{(2)} 2012, 63--73.

\bibitem{alt3} H. Altinok, R. Colak and Y. Altin, {\it On the class of $\lambda$-statistically convergent difference sequences of fuzzy numbers}, Soft Comput., {\bf 16}\textbf{(6)} (2012), 1029--1034.

\bibitem{alt2} H. Altinok, R. Colak and M. Et, {\it $\lambda$-Difference sequence spaces of fuzzy numbers}, Fuzzy Sets and Syst., {\bf 160}\textbf{(21)} (2009), 3128--3139.

\bibitem{dub} D. Dubois and H. Prade, {\it Fuzzy numbers: an overview, analysis of fuzzy information}, Mathematical Logic, CRC Press, Boca, FL, {\bf1} (1987), 3--39.

\bibitem{mat} M. Matloka, {\it Sequences of fuzzy numbers}, BUSEFAL, {\bf 28} (1986), 28--37.

\bibitem{nan} S. Nanda, {\it On sequences of fuzzy numbers}, Fuzzy Sets and Systems, {\bf 33}\textbf{(1)} (1989), 123--126.

\bibitem{sta} \v{C}. V. Stanojevi\'{c}, {\it Analysis of divergence: control and management of divergent
process}, Graduate Research Seminar Lecture Notes, edited by \.{I}.
Canak, University of Missouri - Rolla, Fall, 1998.

\bibitem{sub} P. V. Subrahmanyam, {\it Ces\`{a}ro summability of fuzzy real numbers}, J. Anal., {\bf 7} (1999), 159--168.

\bibitem{sza} O. Sz\'{a}sz, {\it Introduction to the theory of divergent series}, Revised ed. Department of Mathematics, Graduate School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, 1952.

\bibitem{tal} O. Talo and C. Cakan, {\it On the Ces\`{a}ro convergence of sequences of fuzzy numbers}, Appl. Math. Lett., {\bf 25} (2012), 676--681.

\bibitem{trimma} B. C. Tripathy and A. Baruah, {\it New type of difference sequence spaces of fuzzy real numbers}, Math. Model. Anal., {\bf 14}\textbf{(3)} (2009), 391--397.

\bibitem{tri} B. C. Tripathy and A. Baruah, {\it N\"{o}rlund and Riesz mean of sequences of fuzzy real number}, Appl. Math. Lett., {\bf 23}\textbf{(5)} (2010), 651--655.

\bibitem{triij}B. C. Tripathy, A. Baruah, M. Et and M. Gungor, {\it On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers}, Iran. J. Sci. Technol., Trans. A, Sci., {\bf 36}\textbf{(2)} (2012), 147--155.

\bibitem{trimm} B. C. Tripathy and S. Borgogain, {\it The sequence space $m(M, \phi, \Delta _{m}^{n}, p)^{F}$},  Math. Model. Anal., {\bf 13}\textbf{(4)} (2008), 577--586.

\bibitem{tria} B. C. Tripathy and S. Borgogain, {\it Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function}, Adv. Fuzzy Syst., Article ID 216414, 6 pages, 2011.

\bibitem{tricma} B. C. Tripathy and A. J. Dutta, {\it Bounded variation double sequence space of fuzzy real numbers}, Comput. Math. Appl., {\bf 59}\textbf{(2)} (2010), 1031--1037.

\bibitem{trimma12} B. C. Tripathy and A. J. Dutta, {\it On $I$-acceleration convergence of sequences of fuzzy real numbers}, Math. Model. Anal., {\bf 17}\textbf{(4)} (2012),
549--557.

\bibitem{trims} B. C. Tripathy and B. Sarma, {\it Sequence spaces of fuzzy real numbers defined by Orlicz functions},  Math. Slovaca, {\bf 58}\textbf{(5)} (2008), 621--628.

\bibitem{trikmj} B. C. Tripathy and B. Sarma, {\it On $I$-convergent double sequences of fuzzy real numbers},  Kyungpook Math. J., {\bf 52}\textbf{(2)} (2012), 189--200.

\bibitem{zad} L. A. Zadeh, {\it Fuzzy sets}, Information and Control, {\bf 8} (1965), 338--353.