ON SOLUTION OF A CLASS OF FUZZY BVPs

Document Type : Research Paper

Authors

1 School of Mathematics and Computer Science, Damghan Uni- versity, Damghan, Iran

2 School of Mathematics and Computer Science, Damghan University, Damghan, Iran

3 Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

This paper investigates the existence and uniqueness of solutions
to rst-order nonlinear boundary value problems (BVPs) involving fuzzy dif-
ferential equations and two-point boundary conditions. Some sucient condi-
tions are presented that guarantee the existence and uniqueness of solutions
under the approach of Hukuhara di
erentiability.

Keywords


[1] M. F. Abbod, D. G. Von Keyserlingk, D. A. Linkens and M. Mahfouf, Survey of utilisation of
fuzzy technology in medicine and healthcare, Fuzzy Sets and Systems, 120 (2001), 331-349.
[2] T. Allahviranloo and M. A. Kermani, Numerical methods for fuzzy linear partial di erential
equations under new de nition for derivative, Iranian Journal of Fuzzy Systems, 7(3) (2010),
33-50.
[3] S. Bandyopadhyay, An ecient technique for superfamily classi cation of amino acid se-
quences: feature extraction, fuzzy clustering and prototype selection, Fuzzy Sets and Systems,
152 (2005), 5-16.
[4] S. Barro and R. Marn, Fuzzy logic in medicine, Heidelberg: Physica-Verlag, 2002.
[5] B. Bede, Note on "Numerical solutions of fuzzy di erential equations by predictor-corrector
method", Information Sciences, 178 (2008), 1917-1922.
[6] B. Bede and S. G. Gal, Generalizations of the di erentiability of fuzzy number valued func-
tions with applications to fuzzy di erential equation, Fuzzy Sets and Systems, 151 (2005),
581-599.
[7] J. J. Buckley and T. Feuring, Fuzzy di erential equations, Fuzzy Sets and Systems, 110
(2000), 43-54.
[8] J. Casasnovas and F. Rossell, Averaging fuzzy biopolymers, Fuzzy Sets and Systems, 152
(2005), 139-58.
[9] Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy di erential equations,
Chaos, Solitions and Fractals, 38 (2008), 112-119.
[10] B. C. Chang and S. K. Halgamuge, Protein motif extraction with neuro-fuzzy optimization,
Bioinformatics, 18 (2002), 1084-1090.
[11] P. Diamond, Time-dependent di erential inclusions, cocycle attractors and fuzzy di erential
equations, IEEE Trans Fuzzy Syst., 7 (1999), 734-740.
[12] D. Dubois and H. Prade, Towards fuzzy di erential calculus: Part 3, di erentiation, Fuzzy
Sets and Systems, 8 (1982), 225-233.
[13] D. Dubois and H. Prade, Fuzzy numbers: an overview, In: J. Bezdek, ed., Analysis of Fuzzy
Information, CRC Press, 1987.
[14] O. S. Fard and A. V. Kamyad, Modi ed kô€€€step method for solving fuzzy initial value prob-
lems, Iranian Journal of Fuzzy Systems, 8(1) (2011), 49-63.
[15] T. Gnana Bhaskar, V. Lakshmikantham and V. Devi, Revisiting fuzzy di erential equations,
Nonlinear Anal., 58 (2004), 351-358.
[16] R. Goetschel and W. Voxman, Topological properties of fuzzy number, Fuzzy Sets and Sys-
tems, 10 (1983), 87-99.
[17] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986),
31-43.
[18] A. Granas and J. Dugundji, Fixed ooint theory, Springer Monographs in Mathematics.
Springer-Verlag, New York, 2003.
[19] M. Guo, X. Xue and R. Li, The oscillation of delay di erential inclusions and fuzzy biody-
namics models, Math. Comput. Model., 37 (2003), 651-658.
[20] M. Guo and R. Li, Impulsive functional di erential inclusions and fuzzy population models,
Fuzzy Sets and Systems, 138 (2003), 601-615.
[21] C. M. Helgason and T. H. Jobe, The fuzzy cube and causal ecacy: representation of con-
comitant mechanisms in stroke, Neural Networks, 11 (1998), 549-555.
[22] O. Kaleva, Fuzzy di erential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
[23] O. Kaleva, The Cauchy problem for fuzzy di erential equations, Fuzzy Sets and Systems, 35
(1990), 389-396.
[24] O. Kaleva, A note on fuzzy di erential equations, Nonlinear Analysis, 64 (2006), 895-900.
[25] M. Ma, M. Friedman and A. Kandel, A new approach for defuzzi cation, Fuzzy Sets and
Systems, 111 (2000), 351-356.
[26] M. S. El Naschie, A review of E-in nite theory and the mass spectrum of high energy particle
physics, Chaos, Solitons and Fractals, 19 (2004), 209-236.
[27] M. S. El Naschie, The concepts of E-in nite: an elementary introduction to the Cantorian-
fractal theory of quantum physics, Chaos, Solitons and Fractals, 22 (2004), 495-511.
[28] M. S. El Naschie, On a fuzzy Khler manifold which is consistent with the two slit experiment,
Int. J. Nonlinear Sci. Numer. Simult., 6 (2005), 95-98.
[29] J. J. Nieto and R. Rodrguez-Lopez, Bounded solutions for fuzzy di erential and integral
equations, Chaos, Solitons and Fractals, 27 (2006), 1376-1386.
[30] J. J. Nieto and R. Rodrguez-Lopez, Existence and uniqueness results for fuzzy di erential
equations subject to boundary value conditions, AIP Conf. Proc., 1124 (2009), 264-273.
[31] J. J. Nieto and A. Torres, Midpoints for fuzzy sets and their application in medicine, Artif.
Intell. Med., 27 (2003), 81-101.
[32] M. Oberguggenberger and S. Pittschmann, Di erential equations with fuzzy parameters,
Math. Mod. Syst., 5 (1999), 181-202.
[33] D.  ORegan, V. Lakshmikantham and J. Nieto, Initial and boundary value problems for fuzzy
di erential equations, Nonlinear Anal., 54 (2003), 405-415.
[34] S. C. Palligkinis, G. Stefanidou and P. Efraimidi, RungeKutta methods for fuzzy di erential
equations, Applied Mathematics and Computation, 209 (2009), 97-105.
[35] M. L. Puri and D. A. Ralescu, Di erentials of fuzzy functions, Journal of Mathematical
Analysis and Applications, 91 (1983), 552-558.
[36] R. Rodrguez-Lopez, Periodic boundary value problems for impulsive fuzzy di erential equa-
tions, Fuzzy Sets and Systems, 159(11) (2008), 1384-1409.
[37] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.
[38] Y. Tanaka, Y. Mizuno and T. Kado, Chaotic dynamics in the Friedman equation, Chaos,
Solitons and Fractals, 24 (2005), 407-422.
[39] D. Vorobiev and S. Seikkala, Toward the theory of fuzzy di erential equations, Fuzzy Sets
and Systems, 125 (2002), 231-237.