[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87{96.
[2] K. T. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 64
(1994), 159{174.
[3] K. T. Atanassov, Intuitionistic Fuzzy Sets. Theory and Applications, Physica-Verlag, Heidelberg/
New York, 1999.
[4] U. Bodenhofer, B. De Baets and J. Fodor, A compendium of fuzzy weak orders: Representa-
tions and constructions, Fuzzy Sets Syst., 158 (2007), 811{829.
[5] K. Bosteels and E. E. Kerre, On a re
exivity-preserving family of cardinality-based fuzzy
comparison measures, Inform. Sci., 179 (2009), 2342{2352.
[6] H. Bustince, J. Fernandez, R. Mesiar, J. Montero and R. Orduna, Overlap functions, Nonlinear
Anal.: Theory Methods Appl., 72 (2010), 1488{1499.
[7] H. Bustince, M. Pagola, R. Mesiar, E. Hullermeier and F. Herrera, Grouping, overlaps, and
generalized bientropic functions for fuzzy modeling of pairwise comparisons, IEEE Trans.
Fuzzy Syst., 20(3) (2012), 405{415.
[8] H. Bustince, J. Fernandez, A. Kolesarova and R. Mesiar, Generation of linear orders for
intervals by means of aggregation functions, Fuzzy Sets Syst., 220 (2013), 69-77.
[9] T. Calvo, A. Kolesarova, M. Komornikova and R. Mesiar, Aggregation operators: properties,
classes and construction methods, In T. Calvo, G. Mayor, and R. Mesiar (Eds.), Physica-
Verlag, New York, Aggregation Operators. Studies in Fuzziness and Soft Computing, 97
(2002), 3-104.
[10] B. De Baets and R. Mesiar, Triangular norms on product lattices, Fuzzy Sets Syst., 104
(1999), 61{76.
[11] B. De Baets, H. De Meyer and H. Naessens, A class of rational cardinality-based similarity
measures, J. Comp. Appl. Math., 132 (2001), 51{69.
[12] B. De Baets and H. De Meyer, Transitivity frameworks for reciprocal relations:cycle-
transitivity versus FG-transitivity, Fuzzy Sets Syst., 152 (2005), 249{270.
[13] B. De Baets, S. Janssens and H. De Meyer, On the transitivity of a parametric family of
cardinality-based similarity measures, Int. J. Appr. Reason., 50 (2009), 104{116.
[14] M. De Cock and E. E. Kerre, Why fuzzy T-equivalence relations do not resolve the Poincar'e
paradox, and related issues, Fuzzy Sets Syst., 133 (2003), 181{192.
[15] L. De Miguel, H. Bustince, J. Fernandez, E. Indurain, A. Kolesarova and R. Mesiar, Con-
struction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets
with an application to decision making, Information Fusion, 27 (2016), 189-197.
[16] S. Freson, B. De Baets and H. De Meyer, Closing reciprocal relations w.r.t. stochastic tran-
sitivity, Fuzzy Sets Syst., 241 (2014), 2{26.
[17] B. Jayaram and R. Mesiar, I-Fuzzy equivalence relations and I-fuzzy partitions, Inf. Sci., 179
(2009), 1278{1297.
[18] D. F. Li, Toposis-based nonlinear-programming methodology for multiattribute decision mak-
ing with interval-valued intuitionistic fuzzy sets, IEEE Trans. Fuzzy Syst., 18 (2010), 299{311.
[19] X. D. Liu, S. H. Zheng and F. L. Xiong, Entropy and subsethood for general interval-valued
intuitionistic fuzzy sets, Lecture Notes Artif. Intell., 3613 (2005), 42{52.
[20] N. Madrid, A. Burusco, H. Bustince, J. Fernandez and I. Perlieva, Upper bounding overlaps
by groupings, Fuzzy Sets Syst., 264 (2015), 76{99.
[21] S. Ovchinnikov, Numerical representation of transitive fuzzy relations, Fuzzy Sets Syst., 126
(2002), 225{232.
[22] D. G. Park, Y. C. Kwun, J. H. Park and I. Y. Park, Correlation coecient of interval-
valued intuitionistic fuzzy sets and its application to multiple attribute group decision making
problems, Math. Comput. Modell., 50 (2009), 1279{1293.
[23] Z. Switalski, General transitivity conditions for fuzzy reciprocal preference matrices, Fuzzy
Sets Syst., 137 (2003), 85{100.
[24] L. A. Zadeh, Fuzzy sets, Information Contr., 8 (1965), 338 { 353.
[25] W. Y. Zeng and P. Guo, Normalized distance, similarity measure, inclusion measure and
entropy of interval-valued fuzzy sets and their relationship, Inf. Sci., 178 (2008), 1334{1342.
[26] H. Y. Zhang and W. X. Zhang, Hybrid monotonic inclusion measure and its use in measuring
similarity and distance between fuzzy sets, Fuzzy Sets Syst., 160 (2009), 107{118.
[27] Q. Zhang, H. Xing, F. Liu and J. Ye, P. Tang, Some new entropy measures for interval-
valued intuitionistic fuzzy sets based on distances and their relationships with similarity and
inclusion measures, Inf. Sci., 283 (2014), 55{69.