[1] P. Akella, Structure of n-uninorms, Fuzzy Sets and Systems, 158(15) (2007), 1631-1651.
[2] C. Alsina, M. J. Frank, B. Schweizer, Associative functions: Triangular norms and copulas, World Scientific, Singapore, 2006.
[3] M. Baczyński, P. Drygaś, A. Król, R. Mesiar, New types of ordinal sum of fuzzy implications, 2017 IEEE International Conference on Fuzzy Systems, (2017), 1-6.
[4] M. Baczyński, P. Drygaś, R. Mesiar, Monotonicity in the construction of ordinal sums of fuzzy implications, In Proc. of AGOP 2017, (2017), 189-199.
[5] B. De Baets, R. Mesiar, Residual implicators of continuous t-norms, In Proc. of EUFIT ’96, Zimmermann H. J. (editor), ELITE, (Aachen 1996), (1996), 27-31.
[6] B. De Baets, R. Mesiar, Ordinal sums of aggregation operators, In: Bouchon-Meunier B et al. (eds), Technologies for Constructing Intelligent Systems 2, Physica-Verlag, Heidelberg, (2002), 137-148.
[7] G. Beliakov, A. Pradera, T. Calvo, Aggregation functions: A guide for practitioners, New York, Springer-Verlag, 2007.
[8] G. Birkhoff, Lattice theory, American Mathematical Society Colloquium Publications, 25, 1940.
[9] T. Calvo, B. De Baets, J. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets and Systems, 120(3) (2001), 385-394.
[10] A. H. Clifford, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76 (1954), 631-646.
[11] A. C. Climescu, Sur l’équation fonctionelle de l’associativité, Bulletin de l’École Polytechnique de Jassy, 1, (1946), 1-16.
[12] G. P. Dimuro, B. Bedregal, Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties, Fuzzy Sets and Systems, 252 (2014), 39-54.
[13] J. C. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 5 (1997), 411-127.
[14] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.
[15] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, Aggregation functions, Cambridge University Press, 2009.
[16] P. Hájek, Observations on the monoidal t-norm logic, Fuzzy Sets and Systems, 132 (2002), 107-112.
[17] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems, 126(2) (2002), 199-205.
[18] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[19] E. P. Klement, R. Mesiar, E. Pap, Triangular norms as ordinal sums in the sense of A.H. Clifford, Semigroup Forum, 65 (2002), 71-82.
[20] E. P. Klement, R. Mesiar, E. Pap, Archimedean components of triangular norms, Journal of the Australian Mathematical Society, 78 (2005), 239-255.
[21] C. M. Ling, Representation of associative functions, Publicationes Mathematicae Debrecen, 12 (1965), 189-212.
[22] R. Mesiar, B. De Baets, Ordinal sums of aggregation operators, In proc. of AGGREGATION ’99, Calvo T., Mesiar R. (eds.), UIB Palma de Mallorca, (1999), 133-143.
[23] R. Mesiar, A. Mesiarová, Residual implications and left-continuous t-norms which are ordinal sums of semigroups, Fuzzy Sets and Systems, 143 (2004), 47-57.
[24] R. Mesiar, C. Sempi, Ordinal sums and idempotents of copulas, Aequationes Mathematicae, 79(1-2) (2010), 39-52.
[25] A. Mesiarová-Zemánková, Multi-polar t-conorms and uninorms, Information Sciences, 301 (2015), 227-240.
[26] A. Mesiarová-Zemánková, Ordinal sum construction for uninorms and generalized uninorms, International Journal of Approximate Reasoning, 76 (2016), 1-17. [27] A. Mesiarová-Zemánková, A note on decomposition of idempotent uninorms into an ordinal sum of singleton semigroups, Fuzzy Sets and Systems, 299 (2016), 140-145.
[28] A. Mesiarová-Zemánková, Ordinal sums of representable uninorms, Fuzzy Sets and Systems, 308 (2017), 42-53.
[29] A. Mesiarová-Zemánková, Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction, International Journal of Approximate Reasoning, 83 (2017), 176-192.
[30] A. Mesiarová-Zemánková, Characterization of uninorms with continuous underlying t-norm and t-conorm by their set of discontinuity points, IEEE Transactions on Fuzzy Systems, 26(2) (2018), 705-714.
[31] A. Mesiarová-Zemánková, Characterization of idempotent n-uninorms, Fuzzy Sets and Systems, (2020), Doi: 10.1016/j.fss.2020.12.019.
[32] A. Mesiarová-Zemánková, Characterization of n-uninorms with continuous underlying functions via z-ordinal sum construction, International Journal of Approximate Reasoning, 133 (2021), 60-79.
[33] P. S. Mostert, A. L. Shields, On the structure of semi-groups on a compact manifold with boundary, Annals of Mathematics, Series II, 65 (1957), 117-143.
[34] D. Ruiz, J. Torrens, Distributivity and conditional distributivity of a uninorm and a continuous t-conorm, IEEE Transactions on Fuzzy Systems, 14(2) (2006), 180-190.
[35] R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, 80 (1996), 111-120.
[36] W. Zong, Y. Su, H. W. Liu, B. De Baets, On the structure of 2-uninorms, Information Sciences, 467 (2018), 506-527.