[1] P. Baldi, A note on standard completeness for some extensions of uninorm logic, Soft Computing, 18 (2014), 1463-1470.
[2] P. Baldi, A. Ciabattoni, Standard completeness for uninorm-based logics, in 2015 IEEE International Symposium on Multiple-Valued Logic, (2015), 78-83.
[3] S. Banerjee, Fuzzy membership, partial aggregation and reinforcement in multi-sensor data fusion, in Proceedings of 11rd WSEAS International Conference on Computers, Crete Island, Greece, (2007), 125-130.
[4] M. Bianchi, F. Montagna, n-contractive BL-logics, Archive for Mathematical Logic, 50 (2011), 257-285.
[5] B. D. Burrell, C. L. Sahley, K. J. Muller, Non-associative learning and serotonin induce similar bidirectional changes in excitability of a neuron critical for learning in the medicinal leech, Journal of Neuroscience, 15 (2001), 1401-1412.
[6] H. Bustince, M. Pagola, R. Mesiar, E. Hullermeier, F. Herrena, Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparison, IEEE Transactions on Fuzzy Systems, 20 (2012), 405-415.
[7] R. Cignoli, F. Esteva, L. Godo, A. Torrens, Basic fuzzy logic of continuous t-norms and their residua, Soft Computing, 4 (2000), 106-112.
[8] P. Cintula, R. Horčík, C. Noguera, Non-associative substructural logics and their semilinear extensions: Axiomatization and completeness properties, Review of Symbolic Logic, 6 (2013), 394-423.
[9] P. Cintula, R. Horčík, C. Noguera, The quest for the basic fuzzy logic, in Petr Hájek on Mathematical Fuzzy Logic, F. Montagna, (ed), Springer, Dordrecht, (2015), 245-290.
[10] P. Cintula, C. Noguera, Implicational (semiliear) logics I: A new hierarchy, Archive for Mathematical Logic, 49 (2010), 417-446.
[11] P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, in Handbook of Mathematical Fuzzy Logic, Vol. 1, P. Cintula, R. Horčík, C. Noguera (eds.), College Publications, London, (2011), 103-207.
[12] B. Detyniecki, B. Bouchon-Meunier, R. R. Yager, Balance operator: A new version on aggregation operators, in Proceedings of the Joint EUROFUSE-SIC ’99, International Conference, Budapest, Hungary, (1999), 241-246.
[13] F. Durante, C. Sempi, Semicopulae, Kybernetika, 41 (2005), 315-328.
[14] V. Dzhunushaliev, A non-associative quantum mechanics, Foundations of Physics Letters, 19 (2006), 57-167.
[15] V. Dzhunushaliev, Toy models of a non-associative quantum mechanics, Advances in High Energy Physics, 2007 (2007), 10 pages, Doi: 10.1155/2007/12387.
[16] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124 (2001), 271-288.
[17] J. C. Fodor, T. Keresztfalvi, Nonstandard conjunctions and implications in fuzzy logic, International Journal of Approximate Reasoning, 12 (1995), 69-84.
[18] J. C. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 6 (1997), 411-427.
[19] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: An algebraic glimpse at substructural logics, Elsevier, Amsterdam, 2007.
[20] N. Galatos, H. Ono, Cut elimination and strong separation for substructural logics, Annals of Pure and Applied Logic, 161 (2010), 1097-1133.
[21] F. S. Garcia, P. G. Alvarez, ´ Two families of fuzzy integrals, Fuzzy Sets and Systems, 18 (1986), 67-81.
[22] I. R. Goodman, V. Kreinovich, R. Trejo, J. Martinez, R. Gonzalez, An even more realistic (non-associative) logic and its relation to phychology of human reasoning, in IFSA World Congress and 20th NAFIPS, International Conference, Vancouver, Canada, 2001.
[23] I. R. Goodman, V. Kreinovich, R. Trejo, J. Martinez, R. Gonzalez, A realistic (non-associative) logic and a possible explanations of 7 ± 2 law, International Journal of Approximate Reasoning, 29 (2002), 235-266.
[24] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam, 1998.
[25] P. Hájek, R. Mesiar, On copulas, quasicopulas and fuzzy logic, Soft Computing, 12 (2008), 1239-1243.
[26] R. Horčík, C. Noguera, M. Petrík, Extending intuitionistic linear logic with Knotted structural rules, Notre Dame Journal of Formal Logic, 35 (1994), 219-242.
[27] R. Hori, H. Ono, H. Schellinx, On n-contractive fuzzy logics, Mathematical Logic Quarterly, 53 (2007), 268-288.
[28] S. Jenei, F. Montagna, A proof of standard completeness for Esteva and Godo’s logic MTL, Studia Logica, 70 (2002), 183-192.
[29] A. Jurio, H. Bustince, M. Pagola, A. Pradera, R. R. Yager, Some properties of overlap and grouping functions and their application to image thresholding, Fuzzy Sets and Systems, 229 (2013), 69-90.
[30] M. Kanduslki, The equivalence of nonassociative Lambek categorical grammars and context-free grammars, Zeitschrift Für Mathematische Logik und Grundlagen der Mathematik, 34 (1988), 103-114.
[31] R. A. Kleinknecht, Comments on: Non-associative fear acquisition: A review of the evidence from retrospective and longitudinal research, Behaviour Research and Therapy, 40 (2002), 159-163.
[32] E. P. Klement, A. Kolesárová, Extension to copulas and quasicopulas as special 1-Lipschitz aggregation operators, Kybernetika, 41 (2005), 329-348.
[33] V. Kreinovich, Towards more realistic (e.g., non-associative) “and”- and ”or”-operations in fuzzy logic, Soft Computing, 8 (2004), 274-280.
[34] H. W. Liu, Semi-uninorms and implications on a complete lattice, Fuzzy Sets and Systems, 191 (2012), 72-82.
[35] G. Metcalfe, F. Montagna, Substructural fuzzy logics, Journal of Symbolic Logic, 72 (2007), 834-864.
[36] R. B. Nelson, Introduction to copulas, Springer, New York, 2005.
[37] Y. Ouyang, On fuzzy implications determined by aggregation operators, Information Sciences, 193 (2012), 153-162.
[38] Y. Su, H. W. Liu, W. Pedrycz, The distributivity equations of semi-uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 27 (2019), 329-349.
[39] C. J. Van Alten, The finite model property for knotted extensions of propositional linear logics, Journal of Symbolic Logic, 70 (2005), 84-98.
[40] S. Wang, Uninorm logic with the n-potency axiom, Fuzzy Sets and Systems, 205 (2012), 116-126.
[41] S. Wang, A proof of the standard completeness for the involutive uninorm logic, Symmetry, 11 (2019), 1-50.
[42] R. R. Yager, On inference structures for fuzzy systems modeling, in Proceedings of 3rd IEEE International Conference on Fuzzy Systems, Orlando, (1994), 1252-1256.
[43] R. R. Yager, On mean type aggregation, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26 (1994), 209-221.
[44] R. R. Yager, A. Kelman, Fusion of fuzzy information with considerations for compatibility, partial aggregation, and reinforcement, International Journal of Approximate Reasoning, 15 (1996), 93-122.
[45] R. R. Yager, A. Rybalov, Full reinforcement operator in aggregation techniques, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28 (1998), 757-769.
[46] E. Yang, Non-associative fuzzy-relevance logics, Korean Journal of Logic, 12(1) (2009), 89-110.
[47] E. Yang, On the standard completeness of an axiomatic extension of the uninorm logic, Korean Journal of Logic, 12(2) (2009), 115-139.
[48] E. Yang, An axiomatic extension of the uninorm logic revisited, Korean Journal of Logic, 17 (2014), 323-348.
[49] E. Yang, Weakening-free, non-associative fuzzy logics: Micanorm-based logics, Fuzzy Sets and Systems, 276 (2015), 43-58.
[50] E. Yang, Basic substructural core fuzzy logics and their extensions: Mianorm-based logics, Fuzzy Sets and Systems, 301 (2016), 1-18.
[51] E. Yang, Involutive basic substructural core fuzzy logics: Involutive mianorm-based logics, Fuzzy Sets and Systems, 320 (2017), 1-16.
[52] E. Yang, Mianorm-based logics with n-contraction and n-mingle axioms, Journal of Intelligent and Fuzzy Systems, 37 (2019), 7895-7907.
[53] E. Yang, Mianorm-based logics with left and right n-potency axioms, Korean Journal of Logic, 23 (2020), 1-24.
[54] E. Yang, Micanorm aggregation operators: Basic logico-algebraic properties, Soft Computing, 25 (2021), 13167- 13180.
[55] L. A. Zadeh, Preface, in Fuzzy Logic Technology and Applications, R. J. II Marks (ed.), IEEE, Piscataway, (1994). The vertices of a graph, Proceeding of the international symposium on theory of graphs, Rome, Italy, July 1966.