[1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York, 1966.
[2] P. Akella, Structure of n-uninorms, Fuzzy Sets and Systems, 158(15) (2007), 1631-1651.
[3] C. Alsina, M. J. Frank, B. Schweizer, Associative functions: Triangular norms and copulas, World Scientific, Singapore, 2006.
[4] G. Birkhoff, Lattice theory, American Mathematical Society, Colloquium Publications, 25, 1940.
[5] T. Calvo, B. De Baets, J. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets and Systems, 120(3) (2001), 385-394.
[6] A. H. Clifford, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76 (1954), 631-646.
[7] E. Czogala, J. Drewniak, Associative monotonic operations in fuzzy set theory, Fuzzy Sets and Systems, 12 (1984), 249-269.
[8] J. C. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 5 (1997), 411-127.
[9] S. Jenei, Structure of left-continuous triangular norms with strong induced negations, (II) rotation-annihilation construction, Journal of Applied Non-Classical Logics, 11 (2001), 351-366.
[10] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[11] E. P. Klement, R. Mesiar, E. Pap, Archimedean components of triangular norms, Journal of the Australian Mathematical Society, 78 (2005), 239-255.
[12] G. Li, H. W. Liu, J. Fodor, Single-point characterization of uninorms with nilpotent underlying t-norm and tconorm, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22 (2014), 591-604.
[13] C. M. Ling, Representation of associative functions, Publicationes Mathematicae Debrecen, 12 (1965), 189-212.
[14] M. Mas, G. Mayor, J. Torrens, T-operators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7(1) (1999), 31-50.
[15] M. Mas, G. Mayor, J. Torrens, The distributivity condition for uninorms and t-operators, Fuzzy Sets and Systems, 128(2) (2002), 209-225.
[16] A. Mesiarová-Zemánková, Continuous triangular subnorms, Fuzzy Sets and Systems, 142 (2004), 75-83.
[17] A. Mesiarová-Zemánková, T-norms and t-conorms continuous around diagonals, Fuzzy Sets and Systems, 299 (2016), 105-112.
[18] A. Mesiarová-Zemánková, Uninorms continuous on [0, e[2 ∪ ]e, 1]2 , Information Sciences, 393 (2017), 130-143.
[19] A. Mesiarová-Zemánková, Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction, International Journal of Approximate Reasoning, 83 (2017), 176-192.
[20] A. Mesiarová-Zemánková, Characterization of n-uninorms with continuous underlying functions via z-ordinal sum construction, International Journal of Approximate Reasoning, 133 (2021), 60-79.
[21] A. Mesiarov´a-Zem´ankov´a, Natural partial order induced by a commutative, associative and idempotent function, Information Sciences, 545 (2021), 499-512.
[22] A. Mesiarová-Zemánková, Characterization of idempotent n-uninorms, Fuzzy Sets and Systems, 427 (2022), 1-22.
[23] A. Mesiarová-Zemánková, R. Mesiar, Y. Su, Ordinal sum constructions for aggregation functions on the real unit interval, Iranian Journal of Fuzzy Systems, 19(1) (2022), 83-96.
[24] D. Ruiz, J. Torrens, Distributivity and conditional distributivity of a uninorm and a continuous t-conorm, IEEE Transactions on Fuzzy Systems, 14(2) (2006), 180-190.
[25] R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, 80 (1996), 111-120.
[26] W. Zong, Y. Su, H. W. Liu, B. De Baets, On the structure of 2-uninorms, Information Sciences, 467 (2018), 506-527.