[1] S. Abbasbandy, T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers, Computers and Mathematics with Applications, 57(3) (2009), 413-419.
[2] M. Adabitabar Firozja, B. Agheli, M. Hosseinzadeh, Ranking function of two LR-fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 26(3) (2014), 1137-1142.
[3] M. Akram, T. Allahviranloo, W. Pedrycz, M. Ali, Methods for solving LR-bipolar fuzzy linear systems, Soft Computing, 25(1) (2021), 85-108.
[4] T. Allahviranloo, Fuzzy fractional differential operators and equations, Studies in Fuzziness and Soft Computing Series, Springer Nature, 397 (2020), Doi: 10.1007/978-3-030-51272-9.
[5] T. Allahviranloo, S. Abbasbandy, R. Saneifard, A method for ranking of fuzzy numbers using new weighted distance, Mathematical and Computational Applications, 16(2) (2011), 359-369.
[6] T. Allahviranloo, M. A. Firozja, Ranking of fuzzy numbers by a new metric, Soft Computing, 14(7) (2010), 773-782.
[7] T. Allahviranloo, F. Hosseinzadeh Lotfi, M. Adabitabar Firozja, Efficiency in fuzzy production possibility set, Iranian Journal of Fuzzy Systems, 9(4) (2012), 17-30.
[8] T. Allahviranloo, R. Saneifard, Defuzzification method for ranking fuzzy numbers based on center of gravity, Iranian Journal of Fuzzy Systems, 9(6) (2012), 57-67.
[9] B. Asady, A. Zendehnam, Ranking fuzzy numbers by distance minimization, Applied Mathematical Modelling, 31(11) (2007), 2589-2598.
[10] Y. Barazandeh, B. Ghazanfari, A novel method for ranking generalized fuzzy numbers with two different heights and its application in fuzzy risk analysis, Iranian Journal of Fuzzy Systems, 18(2) (2021), 81-91.
[11] V. M. Cabral, L. C. Barros, On differential equations with interactive fuzzy parameter via t-norms, Fuzzy Sets and Systems, 358 (2019), 97-107.
[12] K. C. Chai, K. M. Tay, C. P. Lim, A new method to rank fuzzy numbers using Dempster-Shafer theory with fuzzy targets, Information Sciences, 346 (2016), 302-317.
[13] S. H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems, 17(2) (1985), 113-129.
[14] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems, 95(3) (1998), 307-317.
[15] H. T. X. Chi, F. Y. Vincent, Ranking generalized fuzzy numbers based on centroid and rank index, Applied Soft Computing, 68 (2018), 283-292.
[16] T. C. Chu, H. T. Nguyen, Ranking alternatives with relative maximizing and minimizing sets in a fuzzy MCDM model, International Journal of Fuzzy Systems, 21(4) (2019), 1170-1186.
[17] T. C. Chu, C. T. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with Applications, 43(1-2) (2002), 111-117.
[18] R. Chutia, Ranking of Z-numbers based on value and ambiguity at levels of decision making, International Journal of Intelligent Systems, 36(1) (2021), 313-331.
[19] A. De, S. Das, S. Kar, Ranking of interval type 2 fuzzy numbers using correlation coefficient and Mellin transform, OPSEARCH, (2021), 1-31.
[20] M. De, B. Das, M. Maiti, EPL models with fuzzy imperfect production system including carbon emission: A fuzzy differential equation approach, Soft Computing, 24(2) (2020), 1293-1313.
[21] N. Deepa, K. Ganesan, Hybrid rough fuzzy soft classifier based multi-class classification model for agriculture crop selection, Soft Computing, 23(21) (2019), 10793-10809.
[22] Y. Deng, Z. Zhenfu, L. Qi, Ranking fuzzy numbers with an area method using radius of gyration, Computers and Mathematics with Applications, 51(6-7) (2006), 1127-1136.
[23] D. Dubois, H. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 9(6) (1978), 613-626.
[24] S. A. Edalatpanah, Neutrosophic structured element, Expert Systems, 37(5) (2020), doi:10.1111/exsy.12542.
[25] M. Eshaghnezhad, F. Rahbarnia, S. Effati, A. Mansoori, An artificial neural network model to solve the fuzzy shortest path problem, Neural Processing Letters, 50(2) (2019), 1527-1548.
[26] S. Ezadi, T. Allahviranloo, Artificial neural network approach for solving fuzzy fractional order initial value problems under gH-differentiability, Mathematical Methods in the Applied Sciences, (2020), Doi:10.1002/mma.7287.
[27] B. Fathi Vajargah, Z. Hassanzadeh, Monte Carlo method for the real and complex fuzzy system of linear algebraic equations, Soft Computing, 24(2) (2020), 1255-1270.
[28] M. A. Firozja, F. R. Balf, S. Firouzian, Vague ranking of fuzzy numbers, Mathematical Sciences, 11(3) (2017), 189-193.
[29] R. Fuller, Neural fuzzy systems, Abo Akademi University, 1995.
[30] A. Gola, G. Kosowski, Development of computer-controlled material handling model by means of fuzzy logic and genetic algorithms, Neurocomputing, 338 (2019), 381-392.
[31] V. Gregori, J. J. Minana, D. Miravet, Contractive sequences in fuzzy metric spaces, Fuzzy Sets and Systems, 379 (2020), 125-133.
[32] Q. Gu, Z. Xuan, A new approach for ranking fuzzy numbers based on possibility theory, Journal of Computational and Applied Mathematics, 309 (2017), 674-682.
[33] G. Hesamian, M. G. Akbari, A preference index for ranking closed intervals and fuzzy numbers, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(05) (2017), 741-757.
[34] A. F. R. L. de Hierro, C. Roldan, F. Herrera, On a new methodology for ranking fuzzy numbers and its application to real economic data, Fuzzy Sets and Systems, 353 (2018), 86-110.
[35] W. Jiang, C. Xie, Y. Luo, Y. Tang, Ranking Z-numbers with an improved ranking method for generalized fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 1931-1943.
[36] H. V. Long, M. Ali, M. Khan, D. N. Tu, A novel approach for fuzzy clustering based on neutrosophic association matrix, Computers and Industrial Engineering, 127 (2019), 687-697.
[37] S. Maurya, V. K. Jain, Fuzzy based energy efficient sensor network protocol for precision agriculture, Computers and Electronics in Agriculture, 130 (2016), 20-37.
[38] G. Medini, S. Bouamama, Application of genetic algorithms to distributed optimization problems under fuzzy constraints, Procedia Computer Science, 159 (2019), 1258-1266.
[39] F. Molinari, A new criterion of choice between generalized triangular fuzzy numbers, Fuzzy Sets and Systems, 296 (2016), 51-69.
[40] A. M. Nejad, M. Mashinchi, Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number, Computers and Mathematics with Applications, 61(2) (2011), 431-442.
[41] A. T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, M. Sugeno, Fuzzy control systems: Past, present and future, IEEE Computational Intelligence Magazine, 14(1) (2019), 56-68.
[42] V. Pandiyaraju, R. Logambigai, S. Ganapathy, A. Kannan, An energy efficient routing algorithm for WSNs using intelligent fuzzy rules in precision agriculture, Wireless Personal Communications, (2020), 1-17.
[43] J. Qin, Y. Xi, W. Pedrycz, Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method, Applied Soft Computing, (2020), Doi:10.1016/j.asoc.2020.106
134.
[44] K. Rashidi, K. Cullinane, A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy, Expert Systems with Applications, 121 (2019), 266-281.
[45] J. V. Riera, S. Massanet, H. Bustince, J. Fernandez, On admissible orders on the set of discrete fuzzy numbers for application in decision making problems, Mathematics, 9(1) (2021), 95.
[46] I. Saha, J. P. Sarkar, U. Maulik, Integrated rough fuzzy clustering for categorical data analysis, Fuzzy Sets and Systems, 361 (2019), 1-32.
[47] J. P. C. de Souza, A. L. M. Marcato, E. P. De Aguiar, M. A. Juca, A. M. Teixeira, Autonomous landing of UAV based on artificial neural network supervised by fuzzy logic, Journal of Control, Automation and Electrical Systems, 30(4) (2019), 522-531.
[48] B. Sun, W. Ma, X. Xiao, Three-way group decision making based on multigranulation fuzzy decision-theoretic rough set over two universes, International Journal of Approximate Reasoning, 81 (2017), 87-102.
[49] S. Suneela, S. Chakraverty, New ranking function for fuzzy linear programming problem and system of linear equations, Journal of Information and Optimization Sciences, 40(1) (2019), 141-156.
[50] M. Tavana, K. Khalili-Damghani, F. J. S. Arteaga, R. Mahmoudi, A. Hafezalkotob, Efficiency decomposition and measurement in two-stage fuzzy DEA models using a bargaining game approach, Computers and Industrial Engineering, 118 (2018), 394-408.
[51] J. F. Tian, M. H. Ha, D. Z. Tian, Tripled fuzzy metric spaces and fixed point theorem, Information Sciences, 518 (2020), 113-126.
[52] E. B. Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani, G. W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, Journal of Cleaner Production, 250 (2020), Doi: 10.1016/j.jclepro.2019.1195
17.
[53] S. C. Tong, Adaptive fuzzy control for uncertain nonlinear systems, Journal of Control and Decision, 6(1) (2019), 30-40.
[54] K. Venkatanareshbabu, S. Nisheel, R. Sakthivel, K. Muralitharan, Novel elegant fuzzy genetic algorithms in classification problems, Soft Computing, 23(14) (2019), 5583-5603.
[55] X. Wang, E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems, 118(3) (2001), 375-385.
[56] Z. X. Wang, Y. J. Liu, Z. P. Fan, B. Feng, Ranking L-R fuzzy number based on deviation degree, Information Sciences, 179(13) (2009), 2070-2077.
[57] R. R. Yager, On a general class of fuzzy connectives, Fuzzy Sets and Systems, 4(3) (1980), 235-242.
[58] J. S. Yao, K. Wu, Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems, 116(2) (2000), 275-288.
[59] M. Yazdi, Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry, Journal of Failure Analysis and Prevention, 17(4) (2017), 756-764.
[60] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.
[61] F. Zhang, J. Ignatius, C. P. Lim, Y. Zhao, A new method for ranking fuzzy numbers and its application to group decision making, Applied Mathematical Modelling, 38(4) (2014), 1563-1582.
[62] M. Zhang, P. Shi, L. Ma, J. Cai, H. Su, Network-based fuzzy control for nonlinear Markov jump systems subject to quantization and dropout compensation, Fuzzy Sets and Systems, 371 (2019), 96-109.
[63] J. Zhou, Z. Lai, D. Miao, C. Gao, X. Yue, Multi granulation rough-fuzzy clustering based on shadowed sets, Information Sciences, 507 (2020), 553-573.