[1] D. Agarwal, P. Singh, D. Bhati, S. Kumari, M. S. Obaidat, Duality-based branch-bound computational algorithm for sum-of-linear-fractional multi-objective optimization problem, Soft Computing, 23(1) (2019), 197-210.
[2] D. Agarwal, P. Singh, X. Li, S. Kumari, Optimality criteria for fuzzy-valued fractional multi-objective optimization problem, Soft Computing, 23(19) (2019), 9049-9067.
[3] T. M. Apostol, Mathematical analysis, Reading, MA: Addison-Wesley, 2, 1974.
[4] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear programming, The New York Academy of Sciences - Wiley, 1993.
[5] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Management Science, 17(4) (1970), B-141.
[6] M. Borza, A. S. Rambely, An approach based on α-cuts and max-min technique to linear fractional programming with fuzzy coefficients, Iranian Journal of Fuzzy Systems, 19(1) (2022), 153-169.
[7] L. S. Chen, The KKT optimality conditions for optimization problem with interval-valued objective function on Hadamard manifolds, Optimization, (2020), 1-20.
[8] J. Chen, S. Al-Homidan, Q. H. Ansari, J. Li, Y. Lv, Robust necessary optimality conditions for nondifferentiable complex fractional programming with uncertain data, Journal of Optimization Theory and Applications, 189(1) (2021), 221-243.
[9] J. Chen, L. Huang, Y. Lv, C. F. Wen, Optimality conditions of robust convex multiobjective optimization via ε-constraint scalarization and image space analysis, Optimization, 69(9) (2020), 1849-1879.
[10] B. A. Dar, A. Jayswal, D. Singh, Optimality, duality and saddle point analysis for interval-valued nondifferentiable multiobjective fractional programming problems, Optimization, 70(5-6) (2021), 1275-1305.
[11] W. Dinkelbach, On nonlinear fractional programming, Management Science, 13(7) (1967), 492-498.
[12] E. Fathy, Building fuzzy approach with linearization technique for fully rough multi-objective multi-level linear fractional programming problem, Iranian Journal of Fuzzy Systems, 18(2) (2021), 139-157.
[13] N. A. Gadhi, F. Z. Rahou, M. El Idrissi, L. Lafhim, Optimality conditions of a set valued optimization problem with the help of directional convexificators, Optimization, 70(3) (2021), 575-590.
[14] M. A. Hejazi, S. Nobakhtian, Optimality conditions for multiobjective fractional programming, via convexificators, Journal of Industrial and Management Optimization, 16(2) (2020), 623.
[15] R. Horst, P. M. Pardalos, N. Van Thoai, Introduction to global optimization, Springer Science and Business Media, 2000.
[16] E. Hosseinzade, H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, Journal of Applied Mathematics and Informatics, 29 (2011), 1157-1165.
[17] R. Jagannathan, On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12(7) (1966), 609-615.
[18] R. Jagannathan, Duality for nonlinear fractional programs, Zeitschrift fur Operations Research, 17 (1973), 1-3.
[19] V. D. Pathak, U. M. Pirzada, Necessary and sufficient optimality conditions for nonlinear fuzzy optimization problem, International Journal of Mathematical Science Education, 4(1) (2011), 1-16.
[20] M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 91(2) (1983), 552-558.
[21] W. Rudin, Principles of mathematical analysis, New York: McGraw-hill, 3(2), 1976.
[22] P. Singh, D. Agarwal, D. Bhati, R. N. Mohapatra, A Branch-bound cut technique for non-linear fractional multiobjective optimization problems, International Journal of Applied and Computational Mathematics, 6(2) (2020), 1-17.
[23] D. Singh, B. A. Dar, D. S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European Journal of Operational Research, 254(1) (2016), 29-39.
[24] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161(11) (2010), 1564-1584.
[25] T. V. Su, D. V. Luu, Higher-order Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming, Optimization, (2020), 1-27.
[26] L. T. Tung, Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials, Numerical Functional Analysis and Optimization, 41(6) (2020), 659-684.
[27] H. Z. Wei, C. R. Chen, S. J. Li, Necessary optimality conditions for nonsmooth robust optimization problems, Optimization, (2020), 1-21.
[28] H. C. Wu, Saddle point optimality conditions in fuzzy optimization problems, Fuzzy Optimization and Decision Making, 2(3) (2003), 261-273.
[29] H. C. Wu, The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function, Mathematical Methods of Operations Research, 66(2) (2007), 203-224.
[30] H. C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function, European Journal of Operational Research, 176(1) (2007), 46-59.
[31] H. C. Wu, On interval-valued nonlinear programming problems, Journal of Mathematical Analysis and Applications, 338(1) (2007), 299-316.
[32] H. C. Wu, The optimality conditions for optimization problems with fuzzy-valued objective functions, Optimization, 57(3) (2008), 473-489.
[33] H. C. Wu, The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions, Fuzzy Optimization and Decision Making, 8(3) (2009), 295-321.
[34] H. C. Wu, The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzyvalued objective functions, Fuzzy Optimization and Decision Making, 8(1) (2009), 1-28.
[35] H. C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with intervalvalued objective functions, European Journal of Operational Research, 196(1) (2009), 49-60.
[36] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338-353.
[37] H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1(1) (1978), 45-55.
[38] H. J. Zimmermann, Fuzzy set theory and its applications, (2nd Ed.), Kluwer-Nijhoff, Hinghum, 1991.