Fuzzy betweenness spaces on continuous lattices

Document Type : Research Paper

Authors

Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, China

Abstract

The notion of betweenness spaces is very important in  convex structure theory. In this paper,  it is generalized to continuous lattices. Then  its some characterizations and properties are investigated.
Finally  the categorical relationship between fuzzy generalized convex spaces
and fuzzy betweenness spaces is discussed by using a special antitone Galois connection.

Keywords


[1] J. M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets and Systems, 161(16) (2010), 2130-2149.
[2] G. Gierz, K. H. Hofmann, K. Keimel, et al, Continuous lattices and domains, Cambridge University Press, 2003.
[3] G. Jäger, Stratified LMN-convergence tower spaces, Fuzzy Sets and Systems, 282 (2016), 62-73.
[4] Q. Jin, L. Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces, SpringerPlus, 5(1) (2016), 1610, DOI:10.1186/s40064-016-3255-5.
[5] R. Kumar, V. K. Garg, Introduction to lattice theory, Oliver and Boyd, 1995.
[6] L. Q. Li, On the category of enriched (L, M)-convex spaces, Journal of Intelligent and Fuzzy Systems, 33 (2017), 3209-3216.
[7] E. Q. Li, F. G. Shi, Some properties of M-fuzzifying convexities induced by M-orders, Fuzzy Sets and Systems, 350 (2018), 41-54.
[8] H. Liu, F. G. Shi, Convexity on complete lattices, Soft Computing, 24(8) (2020), 12743-12751.
[9] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164 (2009), 22-37.
[10] B. Pang, Convergence structures in M-fuzzifying convex spaces, Quaestiones Mathematicae, 43 (2020), 1541-1561.
[11] B. Pang, Hull operators and interval operators in (L, M)-fuzzy convex spaces, Fuzzy Sets and Systems, 405 (2021), 106-127.
[12] B. Pang, F. G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets and Systems, 313 (2017), 61-74.
[13] B. Pang, F. G. Shi, Strong inclusion orders between L-subsets and its applications in L-convex spaces, Quaestiones Mathematicae, 41(8) (2018), 1021-1043.
[14] B. Pang, F. G. Shi, Fuzzy counterparts of hull operators and interval operators in the framework of L-convex spaces, Fuzzy Sets and Systems, 369 (2019), 20-39.
[15] B. Pang, F. G. Shi, Convenient properties of stratified L-convergence tower spaces, Filomat, 33 (2019), 4811-4825.
[16] M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets and Systems, 62 (1994), 97-100.
[17] C. Shen, F. H. Chen, F. G. Shi, Derived operators on M-fuzzifying convex spaces, Journal of Intelligent and Fuzzy Systems, 37 (2019), 2687-2696.
[18] C. Shen, F. G. Shi, L-convex systems and the categorical isomorphism to Scott-hull operators, Iranian Journal of Fuzzy Systems, 15(2) (2018), 23-40.
[19] C. Shen, F. G. Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets and Systems, 380 (2019), 44-63.
[20] F. G. Shi, L-fuzzy relation and L-fuzzy subgroup, Journal of Fuzzy Mathematics, 8 (2000), 491-499.
[21] F. G. Shi, E. Q. Li, The restricted hull operator of M-fuzzifying convex structures, Journal of Intelligent and Fuzzy Systems, 30 (2015), 409-421.
[22] F. G. Shi, B. Pang, Categories isomorphic to the category of L-fuzzy closure system spaces, Iranian Journal of Fuzzy Systems, 10(5) (2013), 129-148.
[23] F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, Journal of Applied Mathematics, 2014 (2014), 1-12.
[24] F. G. Shi, Z. Y. Xiu, (L, M)-fuzzy convex structures, Journal of Nonlinear Sciences and Applications, 10(7) (2017), 3655-3669.
[25] A. P. Šostak, On a fuzzy topological structure, Suppl. Rendiconti del Circolo Matematico di Palermo Series, 11 (1985), 89-103.
[26] M. Van De Vel, Theory of convex structures, North-Holland, Amsterdam, 1993.
[27] G. J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992), 351-376.
[28] B. Wang, Q. Li, Z. Y. Xiu, A categorical approach to abstract convex spaces and interval spaces, Open Mathematics, 17 (2019), 374-384.
[29] K. Wang, F. G. Shi, M-fuzzifying topological convex spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 159-174.
[30] X. Y. Wu, Fuzzy generalized convex spaces, Journal of Intelligent and Fuzzy Systems, 39 (2020), 3907-3919.
[31] X. Y. Wu, E. Q. Li, Category and subcategories of (L, M)-fuzzy convex spaces, Iranian Journal of Fuzzy Systems, 16(1) (2019), 173-190.
[32] X. Y. Wu, E. Q. Li, S. Z. Bai, Geometric properties of M-fuzzifying convex structures, Journal of Intelligent and Fuzzy Systems, 32(6) (2017), 4273-4284.
[33] X. Y. Wu, F. G. Shi, M-fuzzifying Bryant-Webster spaces and M-fuzzifying join spaces, Journal of Intelligent and Fuzzy Systems, 35 (2018), 1807-1819.
[34] X. Y. Wu, F. G. Shi, L-concave bases and L-topological concave spaces, Journal of Intelligent and Fuzzy Systems, 35 (2018), 4731-4743.
[35] Z. Y. Xiu, B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex spaces as M-fuzzifying closure spaces, Journal of Intelligent and Fuzzy Systems, 33 (2017), 613-620.
[36] Z. Y. Xiu, F. G. Shi, M-fuzzifying interval spaces, Iranian Journal of Fuzzy Systems, 14(1) (2017), 145-162.
[37] W. Yao, An approach to fuzzy frames via fuzzy posets, Fuzzy Sets and Systems, 166 (2011), 75-89.
[38] M. S. Ying, A new approach for fuzzy topology, Fuzzy Sets and Systems, 39 (1991), 303-321.
[39] Y. Zhong, F. G. Shi, Stratified (L, M)-fuzzy derived spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 109-127.