[1] M. Akram, A. N. Al-Kenani, M. Shabiri, J. C. R. Alcantud, Enhancing ELECTRE I method with complex spherical fuzzy information, International Journal of Computational Intelligence Systems, 14(1) (2021), 1-31.
[2] M. Akram, F. Feng, A. Borumand Saeid, V. Leoreanu-fotea, A new multiple criteria decision-making method based on bipolar fuzzy soft graphs, Iranian Journal of Fuzzy Systems, 15(4) (2018), 73-92.
[3] M. Akram, M. Shabir, Complex T-spherical fuzzy N-soft sets, International Conference on Intelligent and Fuzzy Systems, Springer, Cham, (2021), 819-834.
[4] M. Akram, M. Shabir, A. N. Al-Kenani, J. C. R. Alcantud, Hybrid decision-making frameworks under complex spherical fuzzy N-soft sets, Journal of Mathematics, 2021 (2021), 1-46.
[5] J. C. R. Alcantud, R. D. A. Calle, The problem of collective identity in a fuzzy environment, Fuzzy Sets and Systems, 315 (2017), 57-75.
[6] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[7] R. A. Borzooei, M. Aaly Kologani, M. S. Kish, Y. B. Jun, Fuzzy positive implicative filters of hoops based on fuzzy points, Mathematics, 7(6) (2019), 566.
[8] R. A. Borzooei, H. S. Kim, Y. B. Jun, S. S. Ahn, On multipolar intuitionistic fuzzy B-algebras, Mathematics, 8(6) (2020), 907.
[9] B. C. Cuong, Picture fuzzy sets- a new concept for computational intelligence problems, in Third World Congress on Information and Communication Technologies (WICT), Hanoi, Vietnam, (2013), 1-6.
[10] J. Dai, J. Chen, Feature selection via normative fuzzy information weight with application into tumor classification, Applied Soft Computing, 92 (2020), 106299.
[11] Q. Feng, L. Chen, C. L. P. Chen, L. Guo, Deep fuzzy clustering A representation learning approach, IEEE Transactions on Fuzzy Systems, 28(7) (2020), 1420-1433.
[12] S. Feng, C. L. P. Chen, C. Y. Zhang, A fuzzy deep model based on fuzzy restricted Boltzmann machines for high-dimensional data classification, IEEE Transactions on Fuzzy Systems, 28(7) (2021), 1344-1355.
[13] F. Feng, Z. Xu, H. Fujita, M. Liang, Enhancing PROMETHEE method with intuitionistic fuzzy soft sets, International Journal of Intelligent Systems, 35(7) (2020), 1071-1104.
[14] F. Feng, Y. Zheng, J. C. R. Alcantud, Q. Wang, Minkowski weighted score functions of intuitionistic fuzzy values, Mathematics, 8(7) (2020), 1143.
[15] F. Feng, Y. Zheng, B. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granular Computing, 7(1) (2022), 95-111.
[16] F. Fioravanti, F. Tohmé, Fuzzy group identification problems, Fuzzy Sets and Systems, 434 (2022), 159-171.
[17] C. Guan, S. Wang, A. W. C. Leiw, Lip image segmentation based on fuzzy convolutional neural network, IEEE Transactions on Fuzzy Systems, 28(7) (2020), 1242-1251.
[18] M. Krawczak, G. Szkatua, On matching of intuitionistic fuzzy sets, Information Sciences, 517 (2020), 254-274.
[19] T. Lei, X. Jia, Y. Zhang, S. Liu, H. Meng, A. K. Nandi, Superpixel-based fast fuzzy c-means clustering for color image segmentation, IEEE Transactions on Fuzzy Systems, 27(9) (2019), 1753-1766.
[20] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Computing and Applications, 31 (2019), 7041-7053.
[21] M. U. Molla, B. C. Giri, P. Biswas, Extended PROMETHEE method with Pythagorean fuzzy sets for medical diagnosis problems, Soft Computing, 25 (2021), 4503-4512.
[22] R. T. Ngan, L. H. Son, M. Ali, D. E. Tamir, N. D. Rishe, A. Kandel, Representing complex intuitionistic fuzzy sets by quaternion numbers and applications to decision making, Applied Soft Computing, 87 (2020), 105961.
[23] E. Ontiveros, P. Melin, O. Castillo, Study of interval Type-2 and general Type-2 fuzzy systems in medical diagnosis, Information Sciences, 525 (2020), 37-53.
[24] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Transactions on Fuzzy Systems, 10(2) (2002), 171-186.
[25] F. Samarandache, Neutrosophic set - A generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, 24(3) (2005), 287-297.
[26] K. Ullah, H. Garg, T. Mahmood, N. Jan, Z. Ali, Correlation coefficients for T-spherical fuzzy sets and their applications in clustering and multi-attribute decision making, Soft Computing, 24(3) (2020), 1647-1659.
[27] C. P. Wei, P. Wang, Y. Z. Zhang, Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications, Information Sciences, 181(19) (2011), 4273-4286.
[28] F. Xiao, W. Ding, Divergence measure of Pythagorean fuzzy sets and its applications in medical diagnosis, Applied Soft Computing, 79 (2019), 254-267.
[29] X. Xin, R. A. Borzooei, M. Bakhshi, Y. B. Jun, Intuitionistic fuzzy soft hyper BCK-algebras, Symmetry, 11(3) (2019), 399.
[30] R. R. Yager, Pythagorean fuzzy sets, in Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, (2013), 57-61.
[31] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Transactions on Fuzzy Systems, 22(4) (2014), 958-965.
[32] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Transactions on Fuzzy Systems, 25(5) (2017), 1222-1230.
[33] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[34] J. Zhou, W. Pedrycz, C. Gao, Z. Lai, X. Yue, Principles for constructing three-way approximations of fuzzy sets: A comparative evaluation based on unsupervised learning, Fuzzy Sets and Systems, 413 (2021), 74-98.