On some categories of triangular norms on the real unit interval

Document Type : Research Paper

Author

Institute of Mathematics, University of Silesia in Katowice, Katowice, Poland

Abstract

In this work, we introduce some categories of triangular norms in which truth values belong to the real unit interval, where arrows are a generalization of automorphisms. We investigate the existence of products, coproducts, equalizers and  coequalizers in these categories. Moreover, we show that Theorems 2.29, 2.30 in \cite{Yousefi_Mashinchi_Mesiar_2021} are false by providing counterexamples.

Keywords


[1] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, The Joy of Cats, John Wiley and Sons, New York, 1990.
[2] S. Awodey, Category theory, Oxford Logic Guides 49. Oxford University Pres, 2006.
[3] M. Baczyński, B. Jayaram, Fuzzy implications, volume 231 of Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg, 2008.
[4] M. Barr, Fuzzy set theory and topos theory, Canadian Mathematical Bulletin, 29 (1986), 501-508.
[5] B. Bedregal, R. Bedregal, H. Santos, Bounded lattice t-norms as an interval category, In D. Leivant and R. de Queiroz, editors, Logic, Language, Information and Computation, volume 4576, pages 26-37. Springer-Verlag Berlin Heidelberg, 2007.
[6] A. H. Clifford, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76 (1954), 631-646.
[7] S. Dautović, M. Zekić, Fuzzy logic and enriched categories, Iranian Journal of Fuzzy Systems, 18(3) (2021), 1-11.
[8] B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge University Press, 2002.
[9] J. Fodor, M. Roubens, Fuzzy preference modelling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht, 1994.
[10] J. Goguen, Concept representation in natural and artificial languages: Axioms, extensions and applications for fuzzy sets, International Journal of Man-Machine Studies, 6 (1974), 513-561.
[11] M. Haddadi, Fuzzy acts over fuzzy semigroups and sheaves, Iranian Journal of Fuzzy Systems, 11(14) (2014), 61-73.
[12] B. Jayaram, M. Baczyński, R. Mesiar, R-implications and the exchange principle: The case of border continuous t-norms, Fuzzy Sets and Systems, 224 (2013), 93-105.
[13] S. Jenei, Structure of left-continuous triangular norms with strong induced negations, (I) rotation construction, Journal of Applied Non-Classical Logics, 10 (2000), 83-92.
[14] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems, 126 (2002), 1999-2005.
[15] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer, Dordrecht, 2000.
[16] E. P. Klement, R. Mesiar, E. Pap, Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford, Semigroup Forum, 65 (2002), 71-82.
[17] M. Kuczma, Functional equations in a single variable, PWN - Polish Scientific Publishers, Warszawa, 1968.
[18] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences USA, 28 (1942), 535-537.
[19] J. Močkoř, Powerset operators of extensional fuzzy sets, Iranian Journal of Fuzzy Systems, 15(2) (2018), 143-163.
[20] B. Schweizer, A. Sklar, Associative functions and statistical triangle inequalities, Publicationes Mathematicae Debrecen, 8 (1961), 169-186.
[21] A. Youse, M. Mashinchi, Categories of fuzzy implications and R-implications on bounded lattices, In 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE 2018, (2018), 40-42.
[22] A. Youse, M. Mashinchi, R. Mesiar, Some notes on the category of fuzzy implications on bounded lattices, Kybernetika, 57 (2021), 332-351.
[23] Y. Yu, J. N. Mordeson, S. C. Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Mathematics and Computer Science. Creighton University, Omaha, 1994.