[1] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, The Joy of Cats, John Wiley and Sons, New York, 1990.
[2] S. Awodey, Category theory, Oxford Logic Guides 49. Oxford University Pres, 2006.
[3] M. Baczyński, B. Jayaram, Fuzzy implications, volume 231 of Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg, 2008.
[4] M. Barr, Fuzzy set theory and topos theory, Canadian Mathematical Bulletin, 29 (1986), 501-508.
[5] B. Bedregal, R. Bedregal, H. Santos, Bounded lattice t-norms as an interval category, In D. Leivant and R. de Queiroz, editors, Logic, Language, Information and Computation, volume 4576, pages 26-37. Springer-Verlag Berlin Heidelberg, 2007.
[6] A. H. Clifford, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76 (1954), 631-646.
[7] S. Dautović, M. Zekić, Fuzzy logic and enriched categories, Iranian Journal of Fuzzy Systems, 18(3) (2021), 1-11.
[8] B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge University Press, 2002.
[9] J. Fodor, M. Roubens, Fuzzy preference modelling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht, 1994.
[10] J. Goguen, Concept representation in natural and artificial languages: Axioms, extensions and applications for fuzzy sets, International Journal of Man-Machine Studies, 6 (1974), 513-561.
[11] M. Haddadi, Fuzzy acts over fuzzy semigroups and sheaves, Iranian Journal of Fuzzy Systems, 11(14) (2014), 61-73.
[12] B. Jayaram, M. Baczyński, R. Mesiar, R-implications and the exchange principle: The case of border continuous t-norms, Fuzzy Sets and Systems, 224 (2013), 93-105.
[13] S. Jenei, Structure of left-continuous triangular norms with strong induced negations, (I) rotation construction, Journal of Applied Non-Classical Logics, 10 (2000), 83-92.
[14] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems, 126 (2002), 1999-2005.
[15] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer, Dordrecht, 2000.
[16] E. P. Klement, R. Mesiar, E. Pap, Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford, Semigroup Forum, 65 (2002), 71-82.
[17] M. Kuczma, Functional equations in a single variable, PWN - Polish Scientific Publishers, Warszawa, 1968.
[18] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences USA, 28 (1942), 535-537.
[19] J. Močkoř, Powerset operators of extensional fuzzy sets, Iranian Journal of Fuzzy Systems, 15(2) (2018), 143-163.
[20] B. Schweizer, A. Sklar, Associative functions and statistical triangle inequalities, Publicationes Mathematicae Debrecen, 8 (1961), 169-186.
[21] A. Youse, M. Mashinchi, Categories of fuzzy implications and R-implications on bounded lattices, In 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE 2018, (2018), 40-42.
[22] A. Youse, M. Mashinchi, R. Mesiar, Some notes on the category of fuzzy implications on bounded lattices, Kybernetika, 57 (2021), 332-351.
[23] Y. Yu, J. N. Mordeson, S. C. Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Mathematics and Computer Science. Creighton University, Omaha, 1994.