[1] A.AbbasiMolai, A new algorithm for resolution of the quadratic programming problem with fuzzy relation inequality constraints, Computers & Industrial Engineering, 72 (2014), 306–314.
[2] A. Abbasi Molai, The quadratic programming problem with fuzzy relation inequality constraints, Computers & Industrial Engineering, 62(2012), 256–263.
[3] S. Aliannezhadi, A. Abbasi Molai, B. Hedayatfar, Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints, Kybernetika, 52(4) (2016), 531-557.
[4] M. Allame, B. Vatankhahan, Iteration algorithm for solving Ax = b in max–min algebra, Applied Mathematics and Computation, 175 (2006), 269–276.
[5] T. Arnould, S. Tano, A rule-based method to calculate exactly the widest solution sets of a max–min fuzzy relational inequality, Fuzzy Sets and Systems, 64 (1994), 39–58.
[6] T. Arnould, S. Tano, Arule-based method to calculate the widest solution sets of a max–min fuzzy relational equation, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2 (1994), 247–256.
[7] M. M. Bourke, D. G. Fisher, Solution algorithms for fuzzy relational equations with max-product composition, Fuzzy Sets and Systems, 94 (1998), 61–69.
[8] C. W. Chang, B. S. Shieh, Linear optimization problem constrained by fuzzy max–min relation equations, Information Sciences, 234 (2013), 71–79.
[9] L. Chen, P. P. Wang, Fuzzy relation equations (I): The general and specialized solving algorithms, Soft Computing, 6 (2002), 428–435.
[10] L. Chen, P. P. Wang, Fuzzy relation equations(II): The branch-poit-solutions and the categorized minimal solutions, Soft Computing, 11(2007), 33–40.
[11] B. De Baets, Analytical solution methods for fuzzy relational equations, In: D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series. Kluwer Academic Publishers, Dordrecht, 2000.
[12] A. Di Nola, W. Pedrycz, S. Sessa, On solution of fuzzy relational equations and their characterization, BUSEFAL, 12 (1982), 60–71.
[13] A. Di Nola, W. Pedrycz, S. Sessa, P. Z. Wang, Fuzzy relation equations under triangular norms: a survey and new results, Stochastica, 8 (1984), 99–145.
[14] S. C. Fang, G. Li, Solving fuzzy relation equations with a linear objective function, Fuzzy Sets and Systems, 103 (1999), 107–113.
[15] S. M. Guu, Y. K. Wu, Minimizing a linear objective function with fuzzy relation equation constraints, Fuzzy Optimization and Decision Making, 1(4) (2002), 347–360.
[16] R. Hassanzadeh, E. Khorram, I. Mahdavi, N. Mahdavi-Amiri, A genetic algorithm for optimization problems with fuzzy relation constraints using max-product composition, Applied Soft Computing, 11 (2011), 551–560.
[17] E. Khorram, R. Hassanzadeh, Solving nonlinear optimization problems subjected to fuzzy relation equation constraints with max–average composition using a modified genetic algorithm, Computers & Industrial Engineering, 55 (2008), 1–14.
[18] C. Lichun, P. Boxing, The fuzzy relation equation with union or intersection preserving operator, Fuzzy Sets and Systems, 25(1988), 191–204.
[19] J. Loetamonphong, S. C. Fang, Optimization of fuzzy relation equations with max-product composition, Fuzzy Sets and Systems, 118 (2001), 509–517.
[20] J. Lu, S. C. Fang, Solving nonlinear optimization problems with fuzzy relation equations constraints, Fuzzy Sets and Systems, 119 (2001), 1–20.
[21] L. Luoh, W. J. Wang, Y. K. Liaw, New algorithms for solving fuzzy relation equations, Mathematics and Computers in Simulation, 59 (2002), 329–333.
[22] A. Markovskii, On the relation between equations with max-product composition and the covering problem, Fuzzy Sets and Systems, 153 (2005), 261–273.
[23] A. Markovskii, Solution of fuzzy equations with max-product composition in inverse control and decision making problems, Automation and Remote Control, 65 (2004), 1486–1495.
[24] K. Peeva, Systems of fuzzy equations and inequalities for fuzzy optimization, In: M. Delgado, J. Kacprzky, J. L. Verdegay, M. A. Vila (Eds.), Fuzzy Optimization, Recent Advances, Physica-Verlag, New York, 1994.
[25] E. Sanchez, Resolution of composite fuzzy relation equation, Information and Control, 30 (1976), 38–48.
[26] E. Sanchez, Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic, In: Fuzzy automata and decision processes (M. M. Gupta, G. N. Saridis, B. R. Gaines, Eds.), Amsterdam: NorthHolland, 1977.
[27] E. Shivanian, E. Khorram, Monomial geometric programming with fuzzy relation inequality constraints with maxproduct composition, Computers & Industrial Engineering, 56 (2009), 1386–1392.
[28] P.Z. Wang, D. Z. Zhang, E. Sanchez, E. S. Lee, Latticized linear programming and fuzzy relation inequalities, Journal of Mathematical Analysis and Applications, 159 (1991), 72–87.
[29] Y.-K. Wu, Optimization of fuzzy relational equations with max-av composition, Information Sciences, 177(2007), 4216–4229.
[30] Y. K. Wu, S. M. Guu, A note on fuzzy relation programming problems with max-strict-t-norm composition, Fuzzy Optimization and Decision Making, 3(3) (2004), 271–278.
[31] Y. K. Wu, S. M. Guu, Minimizing a linear function under a fuzzy max–min relational equation constraint, Fuzzy Sets and Systems, 150 (2005), 147–162.
[32] Y. K. Wu, S. M. Guu, J. Y. C. Liu, An accelerated approach for solving fuzzy relation equations with a linear objective function, IEEE Transactions on Fuzzy Systems, 10(4) (2002), 552–558.
[33] Y. K. Wu, S. M. Guu, J. Y. C. Liu, Reducing the search space of a linear fractional programming problem under fuzzy relational equations with max-Archimedean t-norm composition, Fuzzy Sets and Systems, 159 (2008), 3347–3359.
[34] X. P. Yang, X. G. Zhou, B. Y. Cao, Latticized linear programming subject to max-product fuzzy relation inequalities with application in wireless communication, Information Sciences, 358–359 (2016), 44–55.
[35] X. P. Yang, X. G. Zhou, B. Y. Cao, Single-variable term semi-latticized fuzzy relation geometric programming with max-product operator, Information Sciences, 325 (2015), 271–287.
[36] X. G. Zhou, R. Ahat, Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations, Mathematical and Computer Modelling, 53 (2011), 55–62.
[37] X. G. Zhou, X. P. Yang, B. Y. Cao, Posynomial geometric programming problem subject to max–min fuzzy relation equations, Information Sciences, 328 (2016), 15–25.